
Python Tutorial
Release 3.7.0

Guido van Rossum
and the Python development team

September 02, 2018

Python Software Foundation
Email: docs@python.org

Preview from Notesale.co.uk

Page 1 of 155

15 Floating Point Arithmetic: Issues and Limitations 105
15.1 Representation Error . 108

16 Appendix 111
16.1 Interactive Mode . 111

A Glossary 113

B About these documents 127
B.1 Contributors to the Python Documentation . 127

C History and License 129
C.1 History of the software . 129
C.2 Terms and conditions for accessing or otherwise using Python 130
C.3 Licenses and Acknowledgements for Incorporated Software 133

D Copyright 145

Index 147

iii

Preview from Notesale.co.uk

Page 5 of 155

CHAPTER

TWO

USING THE PYTHON INTERPRETER

2.1 Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python3.7 on those machines where it is
available; putting /usr/local/bin in your Unix shell’s search path makes it possible to start it by typing
the command:

python3.7

to the shell.1 Since the choice of the directory where the interpreter lives is an installation option, other
places are possible; check with your local Python guru or system administrator. (E.g., /usr/local/python
is a popular alternative location.)
On Windows machines, the Python installation is usually placed in C:\Program Files\Python37\, though
you can change this when you’re running the installer. To add this directory to your path, you can
type the following command into the command prompt in a DOS box:

set path=%path%;C:\Program Files\Python37\

Typing an end-of-file character (Control-D on Unix, Control-Z on Windows) at the primary prompt causes
the interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing
the following command: quit().
The interpreter’s line-editing features include interactive editing, history substitution and code completion
on systems that support readline. Perhaps the quickest check to see whether command line editing is
supported is typing Control-P to the first Python prompt you get. If it beeps, you have command line
editing; see Appendix Interactive Input Editing and History Substitution for an introduction to the keys. If
nothing appears to happen, or if ^P is echoed, command line editing isn’t available; you’ll only be able to
use backspace to remove characters from the current line.
The interpreter operates somewhat like the Unix shell: when called with standard input connected to a tty
device, it reads and executes commands interactively; when called with a file name argument or with a file
as standard input, it reads and executes a script from that file.
A second way of starting the interpreter is python -c command [arg] ..., which executes the statement(s)
in command, analogous to the shell’s -c option. Since Python statements often contain spaces or other
characters that are special to the shell, it is usually advised to quote command in its entirety with single
quotes.
Some Python modules are also useful as scripts. These can be invoked using python -m module [arg] ...,
which executes the source file for module as if you had spelled out its full name on the command line.
When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode
afterwards. This can be done by passing -i before the script.

1 On Unix, the Python 3.x interpreter is by default not installed with the executable named python, so that it does not
conflict with a simultaneously installed Python 2.x executable.

5

Preview from Notesale.co.uk

Page 11 of 155

Python Tutorial, Release 3.7.0

>>> word[-1] # last character
'n'
>>> word[-2] # second-last character
'o'
>>> word[-6]
'P'

Note that since -0 is the same as 0, negative indices start from -1.
In addition to indexing, slicing is also supported. While indexing is used to obtain individual characters,
slicing allows you to obtain substring:

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)
'Py'
>>> word[2:5] # characters from position 2 (included) to 5 (excluded)
'tho'

Note how the start is always included, and the end always excluded. This makes sure that s[:i] + s[i:]
is always equal to s:

>>> word[:2] + word[2:]
'Python'
>>> word[:4] + word[4:]
'Python'

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults
to the size of the string being sliced.

>>> word[:2] # character from the beginning to position 2 (excluded)
'Py'
>>> word[4:] # characters from position 4 (included) to the end
'on'
>>> word[-2:] # characters from the second-last (included) to the end
'on'

One way to remember how slices work is to think of the indices as pointing between characters, with the left
edge of the first character numbered 0. Then the right edge of the last character of a string of n characters
has index n, for example:

+---+---+---+---+---+---+
| P | y | t | h | o | n |
+---+---+---+---+---+---+
0 1 2 3 4 5 6

-6 -5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0…6 in the string; the second row gives the
corresponding negative indices. The slice from i to j consists of all characters between the edges labeled i
and j, respectively.
For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For
example, the length of word[1:3] is 2.
Attempting to use an index that is too large will result in an error:

>>> word[42] # the word only has 6 characters
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: string index out of range

3.1. Using Python as a Calculator 13

Preview from Notesale.co.uk

Page 19 of 155

Python Tutorial, Release 3.7.0

>>> print(range(10))
range(0, 10)

In many ways the object returned by range() behaves as if it is a list, but in fact it isn’t. It is an object
which returns the successive items of the desired sequence when you iterate over it, but it doesn’t really
make the list, thus saving space.
We say such an object is iterable, that is, suitable as a target for functions and constructs that expect
something from which they can obtain successive items until the supply is exhausted. We have seen that
the for statement is such an iterator. The function list() is another; it creates lists from iterables:

>>> list(range(5))
[0, 1, 2, 3, 4]

Later we will see more functions that return iterables and take iterables as argument.

4.4 break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the innermost enclosing for or while loop.
Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of
the list (with for) or when the condition becomes false (with while), but not when the loop is terminated
by a break statement. This is exemplified by the following loop, which searches for prime numbers:

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print(n, 'equals', x, '*', n//x)
... break
... else:
... # loop fell through without finding a factor
... print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

(Yes, this is the correct code. Look closely: the else clause belongs to the for loop, not the if statement.)
When used with a loop, the else clause has more in common with the else clause of a try statement than it
does that of if statements: a try statement’s else clause runs when no exception occurs, and a loop’s else
clause runs when no break occurs. For more on the try statement and exceptions, see Handling Exceptions.
The continue statement, also borrowed from C, continues with the next iteration of the loop:

>>> for num in range(2, 10):
... if num % 2 == 0:
... print("Found an even number", num)
... continue
... print("Found a number", num)
Found an even number 2

(continues on next page)

4.4. break and continue Statements, and else Clauses on Loops 21

Preview from Notesale.co.uk

Page 27 of 155

Python Tutorial, Release 3.7.0

Strings.) There are tools which use docstrings to automatically produce online or printed documentation,
or to let the user interactively browse through code; it’s good practice to include docstrings in code that you
write, so make a habit of it.
The execution of a function introduces a new symbol table used for the local variables of the function. More
precisely, all variable assignments in a function store the value in the local symbol table; whereas variable
references first look in the local symbol table, then in the local symbol tables of enclosing functions, then in
the global symbol table, and finally in the table of built-in names. Thus, global variables cannot be directly
assigned a value within a function (unless named in a global statement), although they may be referenced.
The actual parameters (arguments) to a function call are introduced in the local symbol table of the called
function when it is called; thus, arguments are passed using call by value (where the value is always an object
reference, not the value of the object).1 When a function calls another function, a new local symbol table is
created for that call.
A function definition introduces the function name in the current symbol table. The value of the function
name has a type that is recognized by the interpreter as a user-defined function. This value can be assigned
to another name which can then also be used as a function. This serves as a general renaming mechanism:

>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89

Coming from other languages, you might object that fib is not a function but a procedure since it doesn’t
return a value. In fact, even functions without a return statement do return a value, albeit a rather boring
one. This value is called None (it’s a built-in name). Writing the value None is normally suppressed by the
interpreter if it would be the only value written. You can see it if you really want to using print():

>>> fib(0)
>>> print(fib(0))
None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing
it:

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while a < n:
... result.append(a) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:
• The return statement returns with a value from a function. return without an expression argument

returns None. Falling off the end of a function also returns None.
• The statement result.append(a) calls a method of the list object result. A method is a function

that ‘belongs’ to an object and is named obj.methodname, where obj is some object (this may be an
1 Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any

changes the callee makes to it (items inserted into a list).

4.6. Defining Functions 23

Preview from Notesale.co.uk

Page 29 of 155

CHAPTER

FIVE

DATA STRUCTURES

This chapter describes some things you’ve learned about already in more detail, and adds some new things
as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:
list.append(x)

Add an item to the end of the list. Equivalent to a[len(a):] = [x].
list.extend(iterable)

Extend the list by appending all the items from the iterable. Equivalent to a[len(a):] = iterable.
list.insert(i, x)

Insert an item at a given position. The first argument is the index of the element before which to
insert, so a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is equivalent to
a.append(x).

list.remove(x)
Remove the first item from the list whose value is equal to x. It raises a ValueError if there is no such
item.

list.pop([i])
Remove the item at the given position in the list, and return it. If no index is specified, a.pop() removes
and returns the last item in the list. (The square brackets around the i in the method signature denote
that the parameter is optional, not that you should type square brackets at that position. You will see
this notation frequently in the Python Library Reference.)

list.clear()
Remove all items from the list. Equivalent to del a[:].

list.index(x[, start[, end]])
Return zero-based index in the list of the first item whose value is equal to x. Raises a ValueError if
there is no such item.
The optional arguments start and end are interpreted as in the slice notation and are used to limit the
search to a particular subsequence of the list. The returned index is computed relative to the beginning
of the full sequence rather than the start argument.

list.count(x)
Return the number of times x appears in the list.

list.sort(key=None, reverse=False)
Sort the items of the list in place (the arguments can be used for sort customization, see sorted() for
their explanation).

31

Preview from Notesale.co.uk

Page 37 of 155

Python Tutorial, Release 3.7.0

(continued from previous page)
... [9, 10, 11, 12],
...]

The following list comprehension will transpose rows and columns:

>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

As we saw in the previous section, the nested listcomp is evaluated in the context of the for that follows it,
so this example is equivalent to:

>>> transposed = []
>>> for i in range(4):
... transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

which, in turn, is the same as:

>>> transposed = []
>>> for i in range(4):
... # the following 3 lines implement the nested listcomp
... transposed_row = []
... for row in matrix:
... transposed_row.append(row[i])
... transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

In the real world, you should prefer built-in functions to complex flow statements. The zip() function would
do a great job for this use case:

>>> list(zip(*matrix))
[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]

See Unpacking Argument Lists for details on the asterisk in this line.

5.2 The del statement

There is a way to remove an item from a list given its index instead of its value: the del statement. This
differs from the pop() method which returns a value. The del statement can also be used to remove slices
from a list or clear the entire list (which we did earlier by assignment of an empty list to the slice). For
example:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]

(continues on next page)

5.2. The del statement 35

Preview from Notesale.co.uk

Page 41 of 155

Python Tutorial, Release 3.7.0

5.5 Dictionaries

Another useful data type built into Python is the dictionary (see typesmapping). Dictionaries are sometimes
found in other languages as “associative memories” or “associative arrays”. Unlike sequences, which are
indexed by a range of numbers, dictionaries are indexed by keys, which can be any immutable type; strings
and numbers can always be keys. Tuples can be used as keys if they contain only strings, numbers, or tuples;
if a tuple contains any mutable object either directly or indirectly, it cannot be used as a key. You can’t use
lists as keys, since lists can be modified in place using index assignments, slice assignments, or methods like
append() and extend().
It is best to think of a dictionary as a set of key: value pairs, with the requirement that the keys are unique
(within one dictionary). A pair of braces creates an empty dictionary: {}. Placing a comma-separated
list of key:value pairs within the braces adds initial key:value pairs to the dictionary; this is also the way
dictionaries are written on output.
The main operations on a dictionary are storing a value with some key and extracting the value given the
key. It is also possible to delete a key:value pair with del. If you store using a key that is already in use,
the old value associated with that key is forgotten. It is an error to extract a value using a non-existent key.
Performing list(d) on a dictionary returns a list of all the keys used in the dictionary, in insertion order
(if you want it sorted, just use sorted(d) instead). To check whether a single key is in the dictionary, use
the in keyword.
Here is a small example using a dictionary:

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'jack': 4098, 'sape': 4139, 'guido': 4127}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'jack': 4098, 'guido': 4127, 'irv': 4127}
>>> list(tel)
['jack', 'guido', 'irv']
>>> sorted(tel)
['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False

The dict() constructor builds dictionaries directly from sequences of key-value pairs:

>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'guido': 4127, 'jack': 4098}

In addition, dict comprehensions can be used to create dictionaries from arbitrary key and value expressions:

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

When the keys are simple strings, it is sometimes easier to specify pairs using keyword arguments:

>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'guido': 4127, 'jack': 4098}

38 Chapter 5. Data Structures

Preview from Notesale.co.uk

Page 44 of 155

Python Tutorial, Release 3.7.0

5.6 Looping Techniques

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using
the items() method.

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
... print(k, v)
...
gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding value can be retrieved at the same
time using the enumerate() function.

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
... print(i, v)
...
0 tic
1 tac
2 toe

To loop over two or more sequences at the same time, the entries can be paired with the zip() function.

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print('What is your {0}? It is {1}.'.format(q, a))
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward direction and then call the
reversed() function.

>>> for i in reversed(range(1, 10, 2)):
... print(i)
...
9
7
5
3
1

To loop over a sequence in sorted order, use the sorted() function which returns a new sorted list while
leaving the source unaltered.

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
... print(f)
...
apple
banana
orange
pear

5.6. Looping Techniques 39

Preview from Notesale.co.uk

Page 45 of 155

Python Tutorial, Release 3.7.0

>>> import builtins
>>> dir(builtins)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',
'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',
'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',
'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
'FileExistsError', 'FileNotFoundError', 'FloatingPointError',
'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',
'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError',
'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError',
'MemoryError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented',
'NotImplementedError', 'OSError', 'OverflowError',
'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError',
'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning',
'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',
'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError',
'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',
'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning',
'ValueError', 'Warning', 'ZeroDivisionError', '_', '__build_class__',
'__debug__', '__doc__', '__import__', '__name__', '__package__', 'abs',
'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable',
'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits',
'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit',
'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr',
'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass',
'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview',
'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property',
'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice',
'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars',
'zip']

6.4 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example,
the module name A.B designates a submodule named B in a package named A. Just like the use of modules
saves the authors of different modules from having to worry about each other’s global variable names, the
use of dotted module names saves the authors of multi-module packages like NumPy or Pillow from having
to worry about each other’s module names.
Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and
sound data. There are many different sound file formats (usually recognized by their extension, for example:
.wav, .aiff, .au), so you may need to create and maintain a growing collection of modules for the conversion
between the various file formats. There are also many different operations you might want to perform on
sound data (such as mixing, adding echo, applying an equalizer function, creating an artificial stereo effect),
so in addition you will be writing a never-ending stream of modules to perform these operations. Here’s a
possible structure for your package (expressed in terms of a hierarchical filesystem):

sound/ Top-level package
__init__.py Initialize the sound package
formats/ Subpackage for file format conversions

__init__.py
wavread.py
wavwrite.py

(continues on next page)

48 Chapter 6. Modules

Preview from Notesale.co.uk

Page 54 of 155

Python Tutorial, Release 3.7.0

>>> s = 'Hello, world.'
>>> str(s)
'Hello, world.'
>>> repr(s)
"'Hello, world.'"
>>> str(1/7)
'0.14285714285714285'
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'
>>> print(s)
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:
... hello = 'hello, world\n'
>>> hellos = repr(hello)
>>> print(hellos)
'hello, world\n'
>>> # The argument to repr() may be any Python object:
... repr((x, y, ('spam', 'eggs')))
"(32.5, 40000, ('spam', 'eggs'))"

The string module contains a Template class that offers yet another way to substitute values into strings,
using placeholders like $x and replacing them with values from a dictionary, but offers much less control of
the formatting.

7.1.1 Formatted String Literals

Formatted string literals (also called f-strings for short) let you include the value of Python expressions inside
a string by prefixing the string with f or F and writing expressions as {expression}.
An optional format specifier can follow the expression. This allows greater control over how the value is
formatted. The following example rounds pi to three places after the decimal:

>>> import math
>>> print(f'The value of pi is approximately {math.pi:.3f}.')

Passing an integer after the ':' will cause that field to be a minimum number of characters wide. This is
useful for making columns line up.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():
... print(f'{name:10} ==> {phone:10d}')
...
Sjoerd ==> 4127
Jack ==> 4098
Dcab ==> 7678

Other modifiers can be used to convert the value before it is formatted. '!a' applies ascii(), '!s' applies
str(), and '!r' applies repr():

>>> animals = 'eels'
>>> print(f'My hovercraft is full of {animals}.')
My hovercraft is full of eels.
>>> print('My hovercraft is full of {animals !r}.')
My hovercraft is full of 'eels'.

For a reference on these format specifications, see the reference guide for the formatspec.

54 Chapter 7. Input and Output

Preview from Notesale.co.uk

Page 60 of 155

Python Tutorial, Release 3.7.0

(continued from previous page)
16
>>> f.seek(5) # Go to the 6th byte in the file
5
>>> f.read(1)
b'5'
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
13
>>> f.read(1)
b'd'

In text files (those opened without a b in the mode string), only seeks relative to the beginning of the file are
allowed (the exception being seeking to the very file end with seek(0, 2)) and the only valid offset values
are those returned from the f.tell(), or zero. Any other offset value produces undefined behaviour.
File objects have some additional methods, such as isatty() and truncate() which are less frequently
used; consult the Library Reference for a complete guide to file objects.

7.2.2 Saving structured data with json

Strings can easily be written to and read from a file. Numbers take a bit more effort, since the read()
method only returns strings, which will have to be passed to a function like int(), which takes a string like
'123' and returns its numeric value 123. When you want to save more complex data types like nested lists
and dictionaries, parsing and serializing by hand becomes complicated.
Rather than having users constantly writing and debugging code to save complicated data types to files,
Python allows you to use the popular data interchange format called JSON (JavaScript Object Notation).
The standard module called json can take Python data hierarchies, and convert them to string represen-
tations; this process is called serializing. Reconstructing the data from the string representation is called
deserializing. Between serializing and deserializing, the string representing the object may have been stored
in a file or data, or sent over a network connection to some distant machine.

Note: The JSON format is commonly used by modern applications to allow for data exchange. Many
programmers are already familiar with it, which makes it a good choice for interoperability.

If you have an object x, you can view its JSON string representation with a simple line of code:

>>> import json
>>> json.dumps([1, 'simple', 'list'])
'[1, "simple", "list"]'

Another variant of the dumps() function, called dump(), simply serializes the object to a text file. So if f is
a text file object opened for writing, we can do this:

json.dump(x, f)

To decode the object again, if f is a text file object which has been opened for reading:

x = json.load(f)

This simple serialization technique can handle lists and dictionaries, but serializing arbitrary class instances
in JSON requires a bit of extra effort. The reference for the json module contains an explanation of this.
See also:
pickle - the pickle module

7.2. Reading and Writing Files 59

Preview from Notesale.co.uk

Page 65 of 155

Python Tutorial, Release 3.7.0

Contrary to JSON , pickle is a protocol which allows the serialization of arbitrarily complex Python objects.
As such, it is specific to Python and cannot be used to communicate with applications written in other
languages. It is also insecure by default: deserializing pickle data coming from an untrusted source can
execute arbitrary code, if the data was crafted by a skilled attacker.

60 Chapter 7. Input and Output

Preview from Notesale.co.uk

Page 66 of 155

Python Tutorial, Release 3.7.0

for line in open("myfile.txt"):
print(line, end="")

The problem with this code is that it leaves the file open for an indeterminate amount of time after this part
of the code has finished executing. This is not an issue in simple scripts, but can be a problem for larger
applications. The with statement allows objects like files to be used in a way that ensures they are always
cleaned up promptly and correctly.

with open("myfile.txt") as f:
for line in f:

print(line, end="")

After the statement is executed, the file f is always closed, even if a problem was encountered while pro-
cessing the lines. Objects which, like files, provide predefined clean-up actions will indicate this in their
documentation.

8.7. Predefined Clean-up Actions 67

Preview from Notesale.co.uk

Page 73 of 155

Python Tutorial, Release 3.7.0

82 Chapter 9. Classes

Preview from Notesale.co.uk

Page 88 of 155

CHAPTER

ELEVEN

BRIEF TOUR OF THE STANDARD LIBRARY — PART II

This second tour covers more advanced modules that support professional programming needs. These mod-
ules rarely occur in small scripts.

11.1 Output Formatting

The reprlib module provides a version of repr() customized for abbreviated displays of large or deeply
nested containers:

>>> import reprlib
>>> reprlib.repr(set('supercalifragilisticexpialidocious'))
"{'a', 'c', 'd', 'e', 'f', 'g', ...}"

The pprint module offers more sophisticated control over printing both built-in and user defined objects in
a way that is readable by the interpreter. When the result is longer than one line, the “pretty printer” adds
line breaks and indentation to more clearly reveal data structure:

>>> import pprint
>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
... 'yellow'], 'blue']]]
...
>>> pprint.pprint(t, width=30)
[[[['black', 'cyan'],

'white',
['green', 'red']],

[['magenta', 'yellow'],
'blue']]]

The textwrap module formats paragraphs of text to fit a given screen width:

>>> import textwrap
>>> doc = """The wrap() method is just like fill() except that it returns
... a list of strings instead of one big string with newlines to separate
... the wrapped lines."""
...
>>> print(textwrap.fill(doc, width=40))
The wrap() method is just like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

The locale module accesses a database of culture specific data formats. The grouping attribute of locale’s
format function provides a direct way of formatting numbers with group separators:

89

Preview from Notesale.co.uk

Page 95 of 155

CHAPTER

THIRTEEN

WHAT NOW?

Reading this tutorial has probably reinforced your interest in using Python — you should be eager to apply
Python to solving your real-world problems. Where should you go to learn more?
This tutorial is part of Python’s documentation set. Some other documents in the set are:

• library-index:
You should browse through this manual, which gives complete (though terse) reference material about
types, functions, and the modules in the standard library. The standard Python distribution includes
a lot of additional code. There are modules to read Unix mailboxes, retrieve documents via HTTP,
generate random numbers, parse command-line options, write CGI programs, compress data, and many
other tasks. Skimming through the Library Reference will give you an idea of what’s available.

• installing-index explains how to install additional modules written by other Python users.
• reference-index: A detailed explanation of Python’s syntax and semantics. It’s heavy reading, but is

useful as a complete guide to the language itself.
More Python resources:

• https://www.python.org: The major Python Web site. It contains code, documentation, and pointers
to Python-related pages around the Web. This Web site is mirrored in various places around the world,
such as Europe, Japan, and Australia; a mirror may be faster than the main site, depending on your
geographical location.

• https://docs.python.org: Fast access to Python’s documentation.
• https://pypi.org: The Python Package Index, previously also nicknamed the Cheese Shop, is an index

of user-created Python modules that are available for download. Once you begin releasing code, you
can register it here so that others can find it.

• https://code.activestate.com/recipes/langs/python/: The Python Cookbook is a sizable collection of
code examples, larger modules, and useful scripts. Particularly notable contributions are collected in
a book also titled Python Cookbook (O’Reilly & Associates, ISBN 0-596-00797-3.)

• http://www.pyvideo.org collects links to Python-related videos from conferences and user-group meet-
ings.

• https://scipy.org: The Scientific Python project includes modules for fast array computations and
manipulations plus a host of packages for such things as linear algebra, Fourier transforms, non-linear
solvers, random number distributions, statistical analysis and the like.

For Python-related questions and problem reports, you can post to the newsgroup comp.lang.python, or
send them to the mailing list at python-list@python.org. The newsgroup and mailing list are gatewayed,
so messages posted to one will automatically be forwarded to the other. There are hundreds of postings a
day, asking (and answering) questions, suggesting new features, and announcing new modules. Mailing list
archives are available at https://mail.python.org/pipermail/.

101

Preview from Notesale.co.uk

Page 107 of 155

Python Tutorial, Release 3.7.0

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

That is more digits than most people find useful, so Python keeps the number of digits manageable by
displaying a rounded value instead

>>> 1 / 10
0.1

Just remember, even though the printed result looks like the exact value of 1/10, the actual stored value is
the nearest representable binary fraction.
Interestingly, there are many different decimal numbers that share the same nearest ap-
proximate binary fraction. For example, the numbers 0.1 and 0.10000000000000001 and
0.1000000000000000055511151231257827021181583404541015625 are all approximated by
3602879701896397 / 2 ** 55. Since all of these decimal values share the same approximation,
any one of them could be displayed while still preserving the invariant eval(repr(x)) == x.
Historically, the Python prompt and built-in repr() function would choose the one with 17 significant
digits, 0.10000000000000001. Starting with Python 3.1, Python (on most systems) is now able to choose
the shortest of these and simply display 0.1.
Note that this is in the very nature of binary floating-point: this is not a bug in Python, and it is not a
bug in your code either. You’ll see the same kind of thing in all languages that support your hardware’s
floating-point arithmetic (although some languages may not display the difference by default, or in all output
modes).
For more pleasant output, you may wish to use string formatting to produce a limited number of significant
digits:

>>> format(math.pi, '.12g') # give 12 significant digits
'3.14159265359'

>>> format(math.pi, '.2f') # give 2 digits after the point
'3.14'

>>> repr(math.pi)
'3.141592653589793'

It’s important to realize that this is, in a real sense, an illusion: you’re simply rounding the display of the
true machine value.
One illusion may beget another. For example, since 0.1 is not exactly 1/10, summing three values of 0.1 may
not yield exactly 0.3, either:

>>> .1 + .1 + .1 == .3
False

Also, since the 0.1 cannot get any closer to the exact value of 1/10 and 0.3 cannot get any closer to the exact
value of 3/10, then pre-rounding with round() function cannot help:

>>> round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)
False

Though the numbers cannot be made closer to their intended exact values, the round() function can be
useful for post-rounding so that results with inexact values become comparable to one another:

>>> round(.1 + .1 + .1, 10) == round(.3, 10)
True

106 Chapter 15. Floating Point Arithmetic: Issues and Limitations

Preview from Notesale.co.uk

Page 112 of 155

Python Tutorial, Release 3.7.0

have a shorter development/debug cycle than compiled ones, though their programs generally also run
more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it
gradually releases all allocated resources, such as modules and various critical internal structures. It
also makes several calls to the garbage collector. This can trigger the execution of code in user-defined
destructors or weakref callbacks. Code executed during the shutdown phase can encounter various
exceptions as the resources it relies on may not function anymore (common examples are library
modules or the warnings machinery).
The main reason for interpreter shutdown is that the __main__ module or the script being run has
finished executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all
sequence types (such as list, str, and tuple) and some non-sequence types like dict, file objects,
and objects of any classes you define with an __iter__() method or with a __getitem__() method
that implements Sequence semantics.
Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(),
…). When an iterable object is passed as an argument to the built-in function iter(), it returns an
iterator for the object. This iterator is good for one pass over the set of values. When using iterables,
it is usually not necessary to call iter() or deal with iterator objects yourself. The for statement
does that automatically for you, creating a temporary unnamed variable to hold the iterator for the
duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() method
(or passing it to the built-in function next()) return successive items in the stream. When no more
data are available a StopIteration exception is raised instead. At this point, the iterator object is
exhausted and any further calls to its __next__() method just raise StopIteration again. Iterators
are required to have an __iter__() method that returns the iterator object itself so every iterator is
also iterable and may be used in most places where other iterables are accepted. One notable exception
is code which attempts multiple iteration passes. A container object (such as a list) produces a fresh
new iterator each time you pass it to the iter() function or use it in a for loop. Attempting this
with an iterator will just return the same exhausted iterator object used in the previous iteration pass,
making it appear like an empty container.
More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or
ordering. For example, locale.strxfrm() is used to produce a sort key that is aware of locale specific
sort conventions.
A number of tools in Python accept key functions to control how elements are ordered or grouped.
They include min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve
as a key function for case insensitive sorts. Alternatively, a key function can be built from a lambda
expression such as lambda r: (r[0], r[2]). Also, the operator module provides three key function
constructors: attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for
examples of how to create and use key functions.

keyword argument See argument.
lambda An anonymous inline function consisting of a single expression which is evaluated when the function

is called. The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or
lookups. This style contrasts with the EAFP approach and is characterized by the presence of many
if statements.

119

Preview from Notesale.co.uk

Page 125 of 155

Python Tutorial, Release 3.7.0

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.7.0

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and
the Individual or Organization ("Licensee") accessing and otherwise using Python
3.7.0 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.7.0 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice of
copyright, i.e., "Copyright © 2001-2018 Python Software Foundation; All Rights
Reserved" are retained in Python 3.7.0 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.7.0 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python
3.7.0.

4. PSF is making Python 3.7.0 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF PYTHON 3.7.0 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.0
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.7.0, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between PSF and Licensee. This License
Agreement does not grant permission to use PSF trademarks or trade name in a
trademark sense to endorse or promote products or services of Licensee, or any
third party.

8. By copying, installing or otherwise using Python 3.7.0, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization

(continues on next page)

130 Appendix C. History and License

Preview from Notesale.co.uk

Page 136 of 155

Python Tutorial, Release 3.7.0

(continued from previous page)
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 131

Preview from Notesale.co.uk

Page 137 of 155

Python Tutorial, Release 3.7.0

(continued from previous page)
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system
is too old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

(continues on next page)

142 Appendix C. History and License

Preview from Notesale.co.uk

Page 148 of 155

Python Tutorial, Release 3.7.0

(continued from previous page)
1. The origin of this software must not be misrepresented; you must not

claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 143

Preview from Notesale.co.uk

Page 149 of 155

Python Tutorial, Release 3.7.0

146 Appendix D. Copyright

Preview from Notesale.co.uk

Page 152 of 155

