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Example 3: Factor��
�
� � ���

Solution

��
�
� � ��� � ��� 	� � ��

Now use the Sum of Cubes Formula:

Ans ��� � �	 ���� � ��� � ��	

Example 4: Factor�
�
� � ��� �

Solution

�
�
� � ��� �

� ��� 	� � ��� 	�

Now use the Difference of Cubes Formula:

Ans ��� � �� 	 ���� � ��� � �
�
� 	
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Chapter 1

Review of Functions

1.1 Functions

A. Definition of a Function

Every valid input,
�
, producesexactly oneoutput,� ; no more, no less

B. Explicit vs. Implicit Functions

1. Explicit Functions: function whose defining equation is solved for� .

2. Implicit Functions: function whose defining equation isnot solved for� .
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Example 2:
� �� 	 � �� �

Solution

� ���	 � � � � � � � � � � �� � � �� �

� �� 	 � �� �

�� �� 	 � � �� �

Ans Since
� ���	 � � �� 	, �

is even.

Example 3:
� �� 	 � �� � �	�

Solution

� ���	 � ��� � �	� � �� � �� � �
� �� 	 � �� � �	� � �� � �� � �

�� �� 	 � � �� � �	� � � ��� � �� � �	 � ��� � �� � �

Ans Since
� ���	 is neither

� �� 	 nor �� �� 	, �
is neither even nor odd.
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Example 2: Given� �� 	 � �
� , decompose� into even and odd parts.

Solution

Note: ��� � � ��� �� 	, so the domain is symmetric.

Now use the formulas:

�
even

�� 	 � �
� �� �� 	 � � ���	�

� �
� �� � � ���	��

� �
� �� � � ���	�� ��

� �
� �� � � � � 	 � 

�

�
odd

�� 	 � �
� �� �� 	 � � ���	�

� �
� �� � � ���	� �

� �
� �� � � ���	�� ��

� �
� �� � � � � 	 � � � �

Ans �
even

�� 	 � 
�

odd
�� 	 � �

�

This was no surprise, really.� was already odd.

Note: This is another even/odd test. To test a function, do the decomposition . . .

If the even part is 0, the function isodd. If the odd part is 0, the function iseven.

If neither are 0, the function isneither even nor odd.
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Exercises

1. Determine if
�

is even, odd, or neither where

a.
� �� 	 � ��� � �

b.
� �� 	 � ��� � � � �

c.
� �� 	 � �

� � ��

d.
� �� 	 � � �� �

e.
� �� 	 � � ��

f.
� �� 	 � ���� �

g.
� �� 	 �

�
��� �

2. Given
� �� 	 � �� � �	�, decompose

�
into even and odd parts.

3. Explain why a nonzero function can not have
�
-axis symmetry.

4. Explain why the domain of a function must be symmetric in order to be able to decompose it
into even and odd parts.
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Example 2: Are
�

and� inverses, where
� �� 	 � ��

and� �� 	 � ��
?

Solution

Check the two conditions!

1. �� � � 	 �� 	 � � �� �� 		 � � ���	 � ��� 	� � �

2. �� � � 	 �� 	 � � �� �� 		 � � ��� 	 � ��� � �� �

Both conditions are not met, so . . .

Ans
�

and� are NOT inverses
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Example 3: Determine if� is one-to-one where� �� 	 �
� ���� ��

�

Solution

1. Set� �� 	 � � �
	:
� ���� ��

�
� �������

�

2. Solve for
�
: LCD=��� � �	 �
� � �	, and

� � ��� ���

��� � �	 �
� � �	 �� ���� ��
� � � ��� � �	 �
� � �	 ��������

� �
�
� � �	 ��� � � 	 � ��� � �	 �
� � � 	

��� � �
� � ��� � �� � 
��� � ��� � �
� � ��
�
� � ��� � ��� � �
� � ��

�� � ��
� �
�� � 
� �

� � �


Ans Since
� � �
, not just

� � 
, � is not one-to-one
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Exercises

Use the formal method to determine if
�

is one-to-one where

1.
� �� 	 � �� � �.

2.
� �� 	 � �� � �.

3.
� �� 	 � �� � �

.

4.
� �� 	 � ���

��� � .

5.
� �� 	 � ���

� ��
� � �	.

6.
� �� 	 � ���� �

7. Show that all linear functions with nonzero slope are one-to-one.

8. Show that if
�

is even, then
�

is not one-to-one.
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Chapter 2

Rational Functions

2.1 The Reciprocal Function

Let
� �� 	 � ��

.
�

is called thereciprocal function.

We can plot this by making a table of values. Since
�

is undefined at
� � , we pick a lot

of points near.

�
�

�� � ���
�� � �

��� � ��
�� ��
� �� ��

� �
� ��

� ��� ��
 undefined

�
�

 undefined��� ��
�

�
�� �

� �
� ��
� �

�� ���
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�-intercept: set
� � : � �	 � �

���� ���� � � ��

Now graph an initial rough sketch:

�

�

Now we need to plot enough points to see what is going on. We pick
� � �� and� � � to see the behavior near the horizontal asymptote, and pick
� � �� and� � �� to see the behavior near the vertical asymptote. Then pick a few others to

see what is going on:

�
�

�� ���
�� �

��
�� �
�� ��

� �
�� ��
�

We plot these points on the grid we already made. Then we connect the points using
the asymptote behavior.
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We plot these points on the grid we already made. Then we connect the points using
the asymptote behavior.

Ans

�

�

Example 3: Graph
�
, where

� �� 	 �
�
� � �� � ��� � � � �

Solution

1. Asymptotes:

We first have to factor . . .

Considering
�� � � � �, we can’t factor it immediately, so we decide to use

the quadratic formula. However�� � �
� � ��	� � � ��	 ��	 � �� � , so
the zeros are complex. Thus we have no vertical asymptotes orholes!

Since degree top
� � and degree bottom

� �, and since� � �, we have an
oblique or curvilinear asymptote (oblique, in fact, as we see below).
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Now use the quadratic formula on the remaining quadratic:

� � ���� ��� ��� ���� ��� � �������� � ������� � ����
�� � �� � �

Since these are complex, we only get one
�
-intercept from the

� � �
factor.

Thus we have one
�
-intercept,

� � �.
�-intercept: set

� � : � �	 � ��������� �� � � ��.

Now graph an initial rough sketch:

�

�

103

Preview from Notesale.co.uk

Page 103 of 448



109

Preview from Notesale.co.uk

Page 109 of 448



Chapter 3

Elementary Trigonometry

3.1 Circles and Revolutions

A. Circles

Standard Form: �� � 
	� � �� � �	� � � �

1. center:�
 � �	
2. radius:

�

3. circumference:��
�
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Graph:

�
�

circumference:��
��

Example 2: Find the center, radius, circumference,
�

and� intercepts of the circle, where�� � �
� � �. Then sketch the circle.

Solution

center: � � 	

radius:
�� � �

circumference: �� � � � ��

�
-intercepts: set�

� :
�� � � � ��� � �� � � �

Thus the
�
-intercepts are

� �.
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Example 3: Evaluate� � ��� 	

Solution

�

� �

�

�


��

��

� � ��� 	

Ans � � ��� 	 � � � ��	
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3.4 The Wrapping Function At Multiples of �
��

A. Introduction

Evaluating� �� 	 for � being a multiple of� or �� is direct. However, we need a rule for
evaluating� �� 	 when� is a multiple of�

�
.

We will derive the�
�

rule in six easy steps.

B. Derivation of the �� Rule

Step 1: Note that if� is a multiple of�
�

(lowest terms), then� �� 	 is in one of 4 spots.

�

� �

� � ��� 	

� �
�
�� 	

� ��� 	

� �
�

�� 	
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Step 4: By symmetry, the� axis bisects the triangle into two with top edge length
���

�

�

� � ��� 	 � ��� 	
� �

� �

� ��

Step 5: We examine triangle
�

� ��

�
�

�

� ��� 	

We can use the Pythagorean Theorem again to find�:

�
� � ���� � � � �� � �

� � �� � � � �
� � �� � �

� ���
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Step 3: Alternate Interior Angles Of Two Parallel Lines
Cut By A Transversal Are Congruent

By the above geometric fact, the other internal angles of thetriangle are� and 

respectively, as in the diagram.

�

� ��� 	� � ��� 	




��

�

Step 4: Since�
 �
�

� � �� � �, the triangle is equiangular. Thus the triangle is equilateral,
and all sides have length 1.

�

� ��� 	� � ��� 	
�

��
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B. Tangent

1. Domain:

Given� �� 	 � �� � � 	, we have��� �
� ��

. Now

��
is undefined when

� � . When
does this happen?

�

�

� �  happens here

Thus��� � is undefined for�
�

���� � ��� � � �� � �� � ��� �
�
�� � ���

What is this in interval notation? To see it, let’s plot the allowed values on a number
line:

�
�������- ��� ���

Thus��� ���� 	: ��� � �� ��� � � �� 	 � �� �� � �� 	 � ��� � ��� 	 � � ��� �
�
�� 	 � ���

Note: Each interval has an endpoint being an “odd multiple of�� ”.

Since �� � � is the formula that generates odd numbers (for� an integer), we
recognize that

��� ���� 	: union of all intervals of the form�
���� ���� �

����
�
�
�� 	, where�

� �

[� is an integer]
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C. Quotient Identities

Using the definitions again, we get

1. ��� �
� � �� �

��� �

2. ��� �
� ��� �

� �� �

D. The Pythagorean Identity

�

�

� �� 	 � �� � � 	

Note:
�� � �

� � � (because we have a unit circle)

Since we have that��� �
� �

and� �� �
�

� , the equation becomes

���� � 	� � ���� � 	� � �

Shorthand:���� � 	� �
���

�
�

Warning: ��� �
�

does notmean���� � 	�; ��� �
�

means��� �� � 	
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Exercises

1. Know��� �
� �

� . Find ��� �.

2. Know� �� �
� � ��

. Find��� ��� 	.

3. Know��� �
� �

�
. Find ��� ��� 	.

4. If � �� �
� ��

, what are the possible values of��� �?

5. If ��� �
� �

� , what are the possible values of� �� �?

6. If ��� �
� �, what are the possible values of��� �?

7. If ��� �
� ��, what are the possible values of��� �?

8. If � �� �
� �, what are the possible values of��� �?
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Example 2: Graph
�
, where

� �� 	 � � � � ��� ��� � �	

Solution

1. �
� � � �  �

� � � �
�

2. �
� � � � �� � �� � �� � � �

� � � � �
�

3. Note below that the�-intercept before the vertical shift, being� ��� ��	, is nega-
tive.

�

�

�

��

� � �
�� �

�
� � �

�

4. There is no reflection

5. Shift up 3 to get final answer
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Exercises

1. Graph
�
, where

a.
� �� 	 � � ��� �

�

b.
� �� 	 � � ��� �� � �� 	

c.
� �� 	 � � ��� ��� � �

� 	

d.
� �� 	 � � �� ��� ��� � �� 	

e.
� �� 	 � � � � � �� �� � �

� 	

f.
� �� 	 � � ��� ��� � �	 � �

g.
� �� 	 � � � �

�
��� ��� � � �

� 	
h.

� �� 	 � � � �� � �� � ��� � � �� 	

2. Let
� �� 	 � � � � ��� ��� � �	. Find��� �

.
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Now draw in the damping curves�
� ��

and�
� ���

, then modify:

Ans

�

�

�� �

Example 2: Graph
�
, where

� �� 	 � �
�
��� ��

Solution

First graph�
�

��� ��:

a. �
� �  �

� � 

b. �
� � �� �

� � ��
�
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c.

�

�

��

�

��
�� ��

�

Now draw in the damping curves�
� �

�
and�

� ��
�
, then modify:

Ans

�

�

� ��
�

��
�
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4.8 Simple Harmonic Motion and Frequency

A. Simple Harmonic Motion

An object that oscillates in time uniformly is said to undergo simple harmonic motion.

Example: Spring-Mass System

frictionless
�

Here
� � 
 � �� �� �	 or

� � 
 ��� �� �	, where

�

: displacement from equilibrium position


: maximum displacement

� : angular frequency

B. Frequency

1. Period, � : �
� ��

� time to undergo one complete cycle

Units: units of time, typically seconds (s)

2. Frequency,� : �
� �

� “oscillation speed” (how many cycles per time)

Units: inverse units of time, typically s
� �

, also called Hertz (Hz)
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Example 2: Find a model for simple harmonic motion satisfying the conditions:

� Period:�s

� Maximum Displacement:�m

� Displacement at
�
� : �m

Solution

Since the object starts at maximum displacement, we use the cosine model:
� � 
 ��� �� �	

Now 
 � �, and�
� � � ��

� , so�
� ���

� �

� .

Ans
� � � ��� ���

�	
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Example 3: Factor���
� � � � ��� � � �

Solution

Can’t factor directly, so convert to same trigonometric function!

Use Pythagorean II: � � ��� � � �
���

� �

Thus,

���
� � � � ��� � � �

� �� � ��� � � 	 � � ��� � � �
�

��� � � � � ��� � � �

� ���� � � �	 ���� � � �	

Ans ���� � � �	 ���� � � �	
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Example 3: Verify the identity:
�

� � � �� � � �
� � � �� �

� � ���
�
�

Solution

Start with the left side:

�
� � � �� � � �

� � � �� �

� � � � �� �

�� � � �� � 	 �� � � �� � 	 � � � ��� �

�� � � �� � 	 �� � � �� � 	 (LCD)

� �

�� � � �� � 	 �� � � �� � 	 (adding)

� �

� � � ��
�
� (multiply out bottom)

� �

���� � � � ���
�
� 	 � ���

�
� (use Pythagorean I)

� �
���

� �
� � ���

�
� (use reciprocal identity)

Thus we reached the right side, so we are done.
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5.3 Sum and Difference Formulas I

A. Derivation of ��� �� � � �

Step 1: For values� and� on the number line, identify� �� 	, � �� 	, and� � �

�

� �

� �� 	 �

�

� �� 	
� � � � � �

Step 2:Connect points to form triangle, and calculate length� (distance between� �� 	 and
� �� 	

�

�

�
� � �

� �� 	 � ���� � � � �� � 	� �� 	 � ���� � � � �� � 	

Distance Formula:�
� � ���� � � ��� � 	� � ���� � � ��� � 	�
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F. Formula for ��� �� � � �

Writing ��� �� �
� 	 as

��� �� �
� 	

��� �� �
� 	 , and then expanding and simplifying (Exercise), we get

��� �� �
� 	 � ��� �

�
��� �

� � ��� � ��� �

Comments:

1. The above formula will only work when��� � and��� � are defined!

2. If they are not defined, then you need to simplify the expression the long way,
using

��� �� �
� 	 � � �� �� �

� 	
��� �� �

� 	
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Example 2: Find ��� � ��� 	

Solution

Write ��� as �� � �� !

Then

��� � �

��
� �

��� ��
� � �

�
�

� ��� ��
�
� � ��� ��� �

� � ��� ��
�
� ��� ��� �

� �� � �
� � �� � �

� �� � ��� � �
� �� � ��� � �

�

�� � ��� � �
� � � ��� � �

� � �
� � � ���

�

� � �� � ��	
�

� � � ��

Ans � � ��
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Example 2: Express��� �� � ��� �� as a product

Solution

Use��� � � ��� �
� �� ��� ��

��� 	 � �� ��
��� 	:

Thus

��� �� � ��� �� � �� ���
�
�� � ��

� � � ��
�
�� � ��

� �
� �� ���

��� �
� � � ��

���
� �

Ans �� � �� � �� �� 	 � �� � ��� 	
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Example 2: Verify the identity:
��� � � � �� �
� �� � � � �� �

�
���

�� � �
� � ���

�� � �
� �

Solution

��� � � � �� �
� �� � � � �� �

� � � �� �
���� 	 ��� �

���� 	
� � �� �

���� 	 ��� �
���� 	 (sum to product formulas)

� ��� �
���� 	

��� �
���� 	

�
��� �

���� 	
� �� �

���� 	
�

���
�� � �

� � ���
�� � �

� �
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Exercises

Verify the following trigonometric identities:

1.
��� �

�
��� ��� �� �

�
� �� ��

�
��� �

2.
���

�
�
�
��� ��� � �� ��

� ���� �

3.
���

��
��� �

���
��

��� �
� ���� ����� � ��� ����� �

4.
��� �

�
���

�
�

� �� �
�
� ��

�
�

�
��� ��
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B. The Six Trigonometric Functions

To motivate what comes next, let us first review the graphs of the six trigonometric func-
tions.

�

�

�

��
��� �� � �� ����

�
�

� ��
�

�

�

��

�

��
��� � ��� ��

�
�

���
�

280

Preview from Notesale.co.uk

Page 280 of 448



C. Motivation

All six trigonometric functions fail the horizontal line test, so arenot one-to-one/invertible.

We therefore define the capital trigonometric functions.

D. Capital Sine Construction

�

�

�

��
��� �� � �� ����

�
�

� ��
�

To make this function one-to-one,without changing the range, one choice that can be
made is to throw away everything except the part of the graph between� �� and �� . This is
not the only choice, but it is the most obvious choice.

�

�

�

���

��
��� ��

�
� �

�� �

The residual function is a capital function. We call it
�
�� .

Thus
�
�� � �

� ��
� � � � �� �� � �� �.
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2. To get��� � from ��� �, we use���
�
� � ���

�
�
� �:�

� �
� � � � � ��

�
�
� �

�
�� � � ��

�
�
� �

� ��
�
�
� ��

��

��� �
� � ���

�

3. Use the restricted domain to try to remove the sign ambiguity:

Since�
� � � � �, we are in the region marked:

�

�

Here� �� � � , so

Ans ��� �
� � ���
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3. Use the restricted domain to try to remove the sign ambiguity:

Since�
� � � � �, we are in the region marked:

�

�

Here� �� � � , so��� �
� ����

.

However, our original problem was to find��� ��.

Thus,

� �� �� � � � �� � ��� �

� ��	
����

� � �
� �
��

� �
����

� � ��
��

� � ���
��

Ans ��� �� � �
�� ���
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Then

��� � � � � �
���

�
�

��� � � � � � �
� �

� � �
��� � � � � � ���

��� � � � ���

��� �
� � �

�

3. Use the restricted domain to try to remove the sign ambiguity:

Since�
� �� �� � �� �, we are in the region marked:

�

�

We see that��� � �  in quadrant I but��� � �  in quadrant IV.

Thus we have noinitial help!

However, since we were originally given
�
�� �

� � �� .

Thus� �� � � .
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D. Comments

1. Warnings:

a. “
� �

” means inverse function when attached to functions,not reciprocal

�
��
� ��

means inverse sine of x

�
�
�� � takes the values of cosecant

Note: These are different.

b.
�
��
� �

and��� arenot inverses! ��� does not have an inverse!
The functions that are inverses are

�
��
� �

and
�
�� . Be careful of this in problems.

c. Some authors are lazy and write���
� �

, when they really mean
�
��
� �

.
To avoid confusion, write

�
��
� �

if that is what is intended.

2. In some older books,
�
��
� �

, ���
� �

, ���
� �

, ���
� �

,
�

��

� �
, � ��

� �
are sometimes written

as������, ������, ������ , ������, ������, and������. In that context, inverse sine,
�
��
� �

, is
pronounced “arc-sine” when it is written as������ .

E. Evaluation

We can evaluate inverse trigonometric functions if the output is a multiple of� , �� , �� ,
�� , or

�� . To do so, we look for appropriate combinations/ratios of
�� , ��� ,

��� , etc.

Remember the range of the inverse trigonometric function!
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6.5 Inverse Trigonometric Problems

A. Method of Solution

1. Define the inverse trigonometric function output to be�.

2. Rewrite the� definition with no inverse trigonometric function by applying the appro-
priate capital trigonometric function to each side.

3. Recast the problem as a capital trigonometric function problem, and solve it.

B. Examples

Example 1: Find � �� ����
� � � �� 		

Solution

1. Let �
�

���
� � � �� 	.

2. Then��� �
� �

� .

3. Thus we have the capital trigonometric problem:

You know��� �
� �

� . Find� �� �.

a. ��� �
� �

�
��� �

� �
�
�
�

� � � � �
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Example 3: Find��� �� ���
� � � �� 		

Solution

1. Let �
�

���
� � � �� 	.

2. Then��� �
�

�� .

3. Thus we have the capital trigonometric problem:

You know��� �
�

�� . Find��� ��.

a. ��� �
�

��

��� �
�

��
�
�

� �� �� � �� 	

b. Now��� ��� 	 � � ���
�
� � �, so we need��� �.

However� � ��� � � �
���

�
�, so� � � �� 	� �

���
�
�.

Thus���
�
�
� � � ���

� ���� .
Then���

�
�
� ���� .

In fact, we have no need for��� �!
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��� ��� � � 	 � � � �� � �
� � � � �

��� ��� � � 	 � �

�� � �
�

���
� ��

Then solving for�, we have�
� �� � ���

� ��
.

Hence we verified that
�
��
� �� � �� � ���

� ��
, so

�
��
� �� � ���

� �� � ��

However, the sum of functions method is useful since it provides a way to tackle
identities that you can’t figure out the other way.

Example 2: Verify the identity:���
� � ��� � � ���

� � ��� � � ��

Solution

Since��� is more natural here . . .

1. Simplify ��� �
���

� � ��� � � ���
� � ��� ��:

Let � � � ���
� � ��� � and �� �

���
� � ��� �.

Then��� � � � ��
and ��� �� �

�� .

Hence we have the following capital trigonometric problem to solve:

Know ��� � � � ��
and��� �� �

�� . Find ��� �� � � �� 	.
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Now ��� � � � �� � ��� � � � �� � � � � �� �� � �� 	

and ��� �� � �� � ��� �� �
��
�
�� � �� �� � �� 	

Also

��� �� � � �� 	 � ��� � � � ��� ��
� � ��� � � ��� ��

� �� � ��
� � �� � ��

� ��� � ����
� � ���

� ��������
� �

Hence we have the identity:

��� �
���

� � � �� � � ���
� � ��� �� � �

2. Now � � � �� �� � �� 	 and�� � �� �� � �� 	, so� � � �� � ��� � � 	.

Thus we have that���
� � � �� � � ���

� � ��� � � ��� � � 	.

Since���
� � � �� �����

� � ��� � � ��� � � 	 and��� �
���

� � � �� � � ���
� � ��� �� � �,

and the only values of�
� ��� � � 	 whose tangent is 1 is� ��� and�

�
, we have

that

���
� � � �� � � ���

� � ��� � � � ��� or ���
� � ��� � � ���

� � ��� � � �� .

It only remains to determine which of the two identities is correct.
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3. Reflection Identities

a.
�
��
� � ���	 � �� ��

� ��

b. ���
� � ���	 � � � ���

� ��

c. ���
� � ���	 � ����

� ��

d. ���
� � ���	 � � � ���

� ��

e.
�

��

� � ���	 � � � �

��

� ��

f. � ��
� � ���	 � �� ��

� ��

B. Calculator Use

Since many calculators don’t have all six inverse trigonometric functions on them, we can
use the above identities to do computations in calculators.

In particular,

1. ���
� �� � �� � ���

� ��

2.
�

��

� �� �
���

� � � �� �
3. � ��

� �� � �
��
� � � �� �

reduces the evaluation of inverse trigonometric functionsto that of inverse sine, inverse
cosine, and inverse tangent.

In fact, using the identity,���
� �� � �

��
� � � �

� ��� � �, we can reduce the need to that of an

inverse sine buttononly!
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Then

1. ���
� �� � �� � �

��
� ��

2. ���
� �� � �

��
� � � �

� ��� � �

3. ���
� �� � �� � �

��
� � � �

� ��� � �

4.
�

��

� �� � �� � �
��
� � � �� �

5. � ��
� �� � �

��
� � � �� �
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C. Strategy

1. Use algebra to isolate a trigonometric function on one side of the equation.

2. Find all solutions in
� � �� 	 through help from looking at the unit circle, and the defini-

tions of the trigonometric functions.

3. The answer is obtained by taking each solution and adding “�� �” to get all solutions.

Note: In situations where more than one type of trigonometric function occurs in an equa-
tions, we try to either

a. separate the functions via factoring

or

b. get rid of one of the trigonometric functions via trigonometric identities.

D. Examples

Example 1: Solve� ���
� � � � �  for

�

Solution

� ���
� � � � � 
� ���

� � � �

���
� � � �

�

���
� � � ��

�

�
coord

� � ��
�
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Thus ���� � � �	 �� � ��
� � �	 � .

By the Zero Product Principle:

� ��
� � � �  or � ���

� � � � 

� ��
� � �� or � ��

� � ��

�coord

� �� or �coord

� ��

�

�

� ��� 	� �
�
�� 	

� � ��� 	

Ans
� � �����

�� � �� � � � � �

�
�� � �� � � � � �

��� � �� � � � � �
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14. ���
�� � ���

� � �

15. ��� �
� � ��� �� � � ��� � � � � 

16. ���
� � � � ���

�

17. ���
� � ��� � � �
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�

�

� ��� 	

Ans
� � �� � �� � � � � �

Example 2: Solve� ���
� � � �� �� �  for

�

Solution

� ���
� � � �� �� � 

� ���
� � � � ��

�
���

� �  (double angle formula)

� ���
� �� � � ��

� 	 � 

By the Zero-Product Principle:

� ���
� �  or � � � ��

� � 

���
� �  or � ��

� � ��

Both of these solutions together, lie on the unit circle in the following locations:
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Example 2: Graph
�
, where

� �� 	 � � ��
� � �� ���

�

Solution

Compress the harmonic combination . . .

�
�� � ���	� � �� � �

� �� 	 � � ��� �� � � 	, where�
�

���
� � ���	

In fact, we can simplify���
� � ���	:

�

�

��

�
��� �� 	

Thus�
� �

� .

Hence, we graph
�
, where

� �� 	 � � � �� �� � �

� 	

1.
� � �

�
�  �

� � � �

�

2.
� � �

�
� �� �

� � �
�

�

Note that the�-intercept is� � �� �

�
� � ���� 	 � ��.

357

Preview from Notesale.co.uk

Page 357 of 448



�

�

length of arc is�
��
� � � �� 	

�

Thus
�

: � � �
��
� � � �� 	 � �� � � � � �

.

This solves the problem. However, let us reconsider the original picture:

�

�

��

Note: If we consider the two triangles, we know that the legs of the two triangle are congru-
ent, since both have length

�
� and the hypotenuse of the two triangles are congruent, since

both have length� (unit circle). Thus, by the HL Postulate, the two triangles are congruent.
Thus the inneranglesof the triangles are the same.

This suggests that learning information about angles wouldmake this problem easier.

Goal: Connect arc length to angles.
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�

� �
� �
� �

Thus�
�

� �� �
� � 	

�
� � �� ��� 	.

Hence, we have thearc length formula: �
� �

�

E. Degree Measure of Angles

Thedegree measureof an angle is defined by dividing up the angle of one complete
revolution into���.

�

�

�

��

���

���
���

F. Conversion

We know�� radians
� ���.

Thus
��
����

� � � ����� � �.

This gives us the following conversion rules:
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2. Supplementary Angles:Angles that differ by�

� �

�
� � � �

3. Complementary Angles:Angles that differ by��

�
�

�
� �� � �

I. Examples Involving Arc Length

The arc length formula�
� �

� assumes that angles are measured in radians. If an angle is
given in degrees, we need to convert to radians first before using the arc length formula.
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7.2 Right Triangle Trigonometry

We now begin applications of trigonometry to geometry usingangle ideas.

A. Development

Suppose we have a right triangle:

�




��

Draw circles of radius� and radius� :

�

�

�

�

�� �




�

Note: By similar triangles,
�� �

�� and �� �
��

Thus
� � �

� and�
� �� .

Hence��� �
� �

� and� �� �
� �� .

Then we have that��� �
�

adjacent side
hypotenuse and� �� �

�
opposite side
hypotenuse

375

Preview from Notesale.co.uk

Page 375 of 448



Example 2: Given the right triangle:

�� ��

Find ��� �, ��� �, ��� �

Solution

We first get the third side via the Pythagorean Theorem:

�� � �
� � ��� � �

� � ��� � �� � ��� � �� � ��� � �
� ��

Now use the right triangle definitions:

��� �
�

opp.
hyp.

� ���
�

��� �
�

adj.
hyp.

� �
�
�

��� �
�

opp.
adj.

� ���
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Since� �� � � � �� , we may write

��� �
� �

�
�
�

� � � � �
� � � �� �

�
�
�
�

3. Angle Formula

If two lines are not perpendicular, and neither is vertical,then the smallest angle�

between the two lines is given by:

�
�

���
� � ��

�
�
�

� � � � �
� � � �� �

�
�
�
�
�

4. Example: Find the smallest angle between the two lines
given by�

� � �
� � and�� � �

� �.

Solution

Slope of�
� � �

� �: � � � �

Slope of�
� � �

� �: � � � ��

Then

�
�

���
� � ��

�
�
�

�� � �

� � ��	 ���	
�
�
�
�
�

�
���

� � ��
�
�
�

��
��

�
�
�
��

�
���

� � ��	
� �

�

Ans �� (or ���)
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7.4 Oblique Triangle Formulas and Derivations

We now consider triangles that arenot right triangles. These are calledoblique triangles.

A. Law of Sines




�

�

�

�

�

1. Law:
��� �



� ��� �
�

� ��� �
�

2. Derivation:

Here we assume that we have anacute triangle, i.e. all angles in the triangle are
acute. If the triangle isobtuse (i.e. an angle whose measure is greater than

��
exists in the triangle), then the derivation is similar.

�

�

�




�

�

�

� �� �
� �� � � � 
 � �� �

� �� �
� �

�
� � �

� ��� �

Thus
 � �� �
�

� � �� � , so
��� �

�

� � �� �

 .
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C. Mollweide’s Formulas




�

�

�

�

�

1. Formulas:


 � �
�

� ���
����� �

� ��
�
�� �


 � �
�

� � ��
����� �

���
�
�� �

2. Derivation:

We’ll derive the first version. The other can be derived similarly.

Since
��� �



� ��� �
�

� ��� �
�

, we have that
��� �
� �� �

� 

�

and
��� �
� �� �

� �
�
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c. conditions for�� obtuse:

I.

�

�





 � � � no triangle

II.

�

� 



 � � � one triangle
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7.6 Solving Oblique Triangles

A. Strategy

1. Given the side/angle data, draw a rough sketch of the triangle(s).

2. If appropriate, use Law of Sines. If not sufficient, use Lawof Cosines.

3. Check your answers in one of Mollweide’s Formulas (it doesn’t matter which one).
Some solutions may be fake, and this will tell you.

B. Tips

1. If possible, try to find the largest angle first. This is the angle opposite the longest
side. This will tell you automatically that the other two angles are acute, and can help to
eliminate fake solutions.

2. Remember that all three angles of a triangle add to���.
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Now at II, the solution (as in the beginning of section 7.1),
is � � �

�� � , i.e. approx.��� � �� ����
� ��� ����.

Thus we have two cases, and two possible triangles (so far).

Case I:
� � �� ����

Then find
�

:
� � ��� � ��� � �� ����

� ��� ����

Then find�:

Law of Sines:�
�� �� �

�

���
�

� � �� �
�
���

Thus,� ���� ��� 	 � � � �� ��� ����

Then� � �� � �� �� �
�

���
� �� �

�
� � �� �

�
.

Case II:
� � ��� ����

Then find
�

:
� � ��� � ��� � ��� ���� � �� ����

Then find�:

Law of Sines:�
�� ��

�

���
�

� � �� �
�
���

Thus,� ���� ��� 	 � � � �� �� ����

Then� � �� � �� ��
�

���
��� �

�
� � � ��.

Now we need to check the answers using one of Mollweide’s Formulas.
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Example 3: Solve the triangle:
 � �, � � ��, �
� �

Solution

Draw a Picture:


 � �
�

�
� �

��

� � ��

Law of Sines won’t work (yet).

Law of Cosines: Find
�

(largest angle)
�
� � 
� � �� � �
� ��� �

�� � �� � ��� � � ��	 ���	 ��� �
� ��	 ���	 ��� � � �� � ��� � ��

��� �
� �� � ��� � ��

� ��	 ���	
� � �

��

Since
� � � � � �, we have��� �

� � �

��, so
� �

���
� � �� �

��	 � �� �

���

Note: Since we found the largest angle, we know that
the other two angles are acute!

Find
�

:

Now we can use the Law of Sines:��� ���
�

�
���� � ��� ���

Thus� �� �
� �� ��� ���

�

�
���� �

�

���.
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Example 4: Solve the triangle:
 � �, � � �,
� � ���

Solution

Draw a Picture:


 � �
�

�

� � ����

� � �

Law of Sines won’t work (yet).

Find c:

Law of Cosines:

�
� � 
� � �� � �
� ��� �

�
� � �� � �� � � ��	 ��	 ��� ���

�
� � � � � � �� ��� ���
�
� � �� � �� ��� ��� � �

�

���

Find B:

Law of Sines:�
�� �

�
� � ��

����
�

��
�

Then� �� �
�

� ���
����

�

��
�

�
�

���.
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4.

hole

�

�

3.1

1a.
�� � �

� � �

1c. �� � �	� � �� � �	� � �

2b. center:�� � ��	; radius:�; circumference:��

�
-intercepts:�

� ���; �-intercepts:�� � ���

�

�
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4. �� �
�� �

�� 	

6. � � ��	

7. �� �� � � �� 	

9. �� ��� � � � �� 	

12. �� �� � � �� 	

3.6

1a. � � ��

1c.
��
��

1e. ��

1g. � ��

1i. � ���

1k. �

1m. undefined

1o. undefined

3.9

1. � ��
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2d.

�
�

��� � �� ���� ��� ��

� �
�

�
�

�

centerline

�� ��
2g.

�

�

centerline

�
������� ���

�

���
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4.
�����

5.
���

��
�
��

���
�
�
�
�

�

7. ���
�
��
��

���
�
�
�
�

�

5.10

2. �� � �� ��� 	 � �� ��� 	

4. � ��� ��� 	 ��� �

6.2

1.
� ��

2.
���
�

4.
� ��
�

6.3

1. �
�� � ����

3. � �
�

5. �� ��
8.

�
�

9. ��� � �

11.
��� ���� � � � ���� �
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12.
�� ���� �

�
�

6.4

1. ��
2. � ��
4.

�
��

5. ��

8.
�
���

11. �

�

6.5

1.
����

4.
�� �

�

5. �
���

7. ��� � �

8. 

9.
��� � �

11.
��
�

13.
�� ����

�
�

14.
�� �����

�
�

� �
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3.
� � � �

�� � �� � � � � �

�

�� � �� � � � � �

5.
�

6.
� � �����

�

� � �� � � � � �

� � �� � � � � �

�
�

� � �� � � � � �

8.
� � � ��� � �� ��� �

� � �

�

� � ���
�

�
� � �

6.10

1a. � ��� ��� � � 	, where�
�

���
� ��

�
� 	

1c. ��� � �� ��� � � 	, where�
�

���
� ����	

2b.

�

�

��

�

�
�

�

�
��
�

��
�

�
���

�

�� ��
�

3b.
� � � ��� � �� ���

� ���	 � ���� �
� � �

���� � ��
���

� ���	 � �� �� �
� � �
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