
 # 7 raise to the power 2 below

 # divide 7 by 2 nd round it to the nearest integer

 Expected output:

 9

 5

 14

 3.5

 1

 49

 3

 3. Order of Operations:

 Now Arithmetic operators in python follow the BEDMAS order of operations.

 Look at this mathematical equation (2+3*5) what do you think will be the answer 25

 or 17. The answer is 17 because in maths we follow a convention called as the order

 of operations BEDMAS ie.

Preview from Notesale.co.uk

Page 4 of 212

 MYPYTHON= "PythonGuides"

 myPython= "PythonGuides"

 myPython7= "PythonGuides"

 []

 #Variable name not Allowed

 7 mypython= "PythonGuides"

 -mypython= "PythonGuides"

 myPy@thon= "PythonGuides"

 my Python= "PythonGuides"

 for = "PythonGuides"

 #It shows invalid syntax.

 #It will execute one by one and will show the error.

 Also there are some naming convention that needs to be followed like:

 ● try to keep the name of the variables descriptive short but descriptive. for

 example: when taking inputs for the height of a tree of a box the appropriate

 variable name will be just height not x not h not height_of_the_tree .

 ● Also the pythonic way to name variables is to use all lowercase letters and

 underscores to separate words.

 []

Preview from Notesale.co.uk

Page 11 of 212

 Methods are like some of the functions you have already seen:

 ● len("this")

 ● type(12)

 ● print("Hello world")

 These three above are functions - notice they use parentheses, and accept one or

 more arguments. Functions will be studied in much more detail in a later lesson!

 A method in Python behaves similarly to a function. Methods actually are functions

 that are called using dot notation. For example, lower() is a string method that can

 be used like this, on a string called "sample string" : sample_string.lower() .

 Methods are specific to the data type for a particular variable. So there are some

 built-in methods that are available for all strings, different methods that are available

 for all integers, etc.

 Below is an image that shows some methods that are possible with any string.

 Each of these methods accepts the string itself as the first argument of the method.

 However, they also could receive additional arguments, that are passed inside the

 parentheses. Let's look at the output for a few examples.

 []

 my_string = "ShapeAI"

 print (my_string.islower())

Preview from Notesale.co.uk

Page 31 of 212

 print (students[-3])

 If you try to access an index in a list that doesn't exist then you will get an Error as

 seen below.

 []

 print (students[20])

 Question:

 Try to use len() to pull the last element from the above list

 []

 # TODO: write your code here

 students[len (students) -1]

 13.a. Membership Operators:[Lists]

 In addition to accessing individual elements froma a list, we can use pythons

 sliceing notation to access a subsequence of a list.

 Slicing means using indicies to slice off parts of an object like list/string. Look at an

 example

 []

 students = ['sam' , 'pam' , 'rocky' , 'austin' , 'steve' , 'banner' , 'tony' , 'bruce' ,

Preview from Notesale.co.uk

Page 35 of 212

 print (flash)

 []

 # length of the list and the string

 print (len (students))

 print (len (student))

 Of the types we have seen lists are most familier to strings, both supports the len()

 function, indexing and slicing.

 Here above you have seen that the length of a string is the no of characters in

 the string, while the length of a list is the no of elements in the list.

 Another thing that they both supports aare membership operators:

 ● in: evaluates if an object on the left side is included in the object on the right

 side.

 ● not in: evaluates if object on left side is not included in object on right side.

 []

 greeting = "Hello there"

 print ('her' in greeting, 'her' not in greeting)

 []

 print ('ShapeAI' in students, 'ShapeAI' not in students)

 13.b. Mutability and Order:

Preview from Notesale.co.uk

Page 37 of 212

 vector = (4 , 5 , 9)

 print ("x-coordinate:" , vector[0])

 print ("y-coordinate:" , vector[1])

 print ("z-coordinate:" , vector[2])

 Tuples are similar to lists in that they store an ordered collection of objects which

 can be accessed by their indices. Unlike lists, however, tuples are immutable - you

 can't add and remove items from tuples, or sort them in place.

 Tuples can also be used to assign multiple variables in a compact way.

 The parentheses are optional when defining tuples, and programmers

 frequently omit them if parentheses don't clarify the code.

 []

 location = 108.7774 , 92.5556

 latitude, longtitude = location

 print ("The coordinates are {} x {}" . format (latitude, longtitude))

 In the second line, two variables are assigned from the content of the tuple location.

 This is called tuple unpacking. You can use tuple unpacking to assign the

 information from a tuple into multiple variables without having to access them one

 by one and make multiple assignment statements.

 If we won't need to use location directly, we could shorten those two lines of code

 into a single line that assigns three variables in one go!

Preview from Notesale.co.uk

Page 43 of 212

 4. Following the for loop heading is an indented block of code, the body of the

 loop, to be executed in each iteration of this loop. There is only one line in the

 body of this loop - print(city) .

 5. After the body of the loop has executed, we don't move on to the next line yet;

 we go back to the for heading line, where the iteration variable takes the value

 of the next element of the iterable. In the second iteration of the loop above,

 city takes the value of the next element in cities , which is "mountain view".

 6. This process repeats until the loop has iterated through all the elements of

 the iterable. Then, we move on to the line that follows the body of the loop - in

 this case, print("Done!") . We can tell what the next line after the body of the

 loop is because it is unindented. Here is another reason why paying attention

 to your indentation is very important in Python!

 You can name iteration variables however you like. A common pattern is to

 give the iteration variable and iterable the same names, except the singular

 and plural versions respectively (e.g., 'city' and 'cities').

 Using the range() Function with for Loops:

 range() is a built-in function used to create an iterable sequence of numbers. You will

 frequently use range() with a for loop to repeat an action a certain number of times,

 as in this example:

 []

 for i in range (3):

 print ("Hello!")

 Hello!

Preview from Notesale.co.uk

Page 63 of 212

 Hello!

 Hello!

 range(start=0, stop, step=1)

 The range() function takes three integer arguments, the first and third of which are

 optional:

 ● The 'start' argument is the first number of the sequence. If unspecified, 'start'

 defaults to 0.

 ● The 'stop' argument is 1 more than the last number of the sequence. This

 argument must be specified.

 ● The 'step' argument is the difference between each number in the sequence.

 If unspecified, 'step' defaults to 1.

 Notes on using range():

 ● If you specify one integer inside the parentheses withrange(), it's used as the

 value for 'stop,' and the defaults are used for the other two. Example-

 []

 for i in range (4):

 print (i)

 0

 1

 2

 3

Preview from Notesale.co.uk

Page 64 of 212

 ● If you specify two integers inside the parentheses withrange(), they're used

 for 'start' and 'stop,' and the default is used for 'step.' Example-

 []

 for i in range (2 , 6):

 print (i)

 2

 3

 4

 5

 ● Or you can specify all three integers for 'start', 'stop', and 'step.' Example-

 []

 for i in range (1 , 10 , 2):

 print (i)

 1

 3

 5

 7

 9

Preview from Notesale.co.uk

Page 65 of 212

 []

 names = ["Joey Tribbiani" , "Monica Geller" , "Chandler Bing" , "Phoebe Buffay"]

 usernames = []

 # write your for loop here

 print (usernames)

 Question:

 Write a for loop that iterates over a list of strings, tokens, and counts how many of

 them are XML tags.

 XML is a data language similar to HTML. You can tell if a string is an XML tag

 if it begins with a left angle bracket "<" and ends with a right angle bracket ">".

 Keep track of the number of tags using the variable count.

 You can assume that the list of strings will not contain empty strings.

 []

 tokens = ['<greeting>' , 'Hello World!' , '</greeting>']

 count = 0

 # write your for loop here

Preview from Notesale.co.uk

Page 69 of 212

 []

 # number to find the factorial of

 number = 6

 # start with our product equal to one

 product = 1

 # write your for loop here

 # print the factorial of number

 print (product)

 Question:

 Suppose you want to count from some number start_num by another number

 count_by until you hit a final number end_num. Use break_num as the variable that

 you'll change each time through the loop. For simplicity, assume that end_num is

 always larger than start_num and count_by is always positive.

 Before the loop, what do you want to set break_num equal to? How do you want to

 change break_num each time through the loop? What condition will you use to see

 when it's time to stop looping?

Preview from Notesale.co.uk

Page 77 of 212

 After the loop is done, print out break_num, showing the value that indicated it was

 time to stop looping. It is the case that break_num should be a number that is the

 first number larger than end_num.

 []

 start_num = 5

 end_num = 30

 count_by = 3

 # write a while loop that uses break_num as the ongoing number to

 # check against end_num

 print (break_num)

 Break and Continue:

 For Loop iterate over every element in a sequence, while loops iterate over every

 element untill stopping condition is met.

 This is sufficient for most purposes, but sometimes we need more precise control

 over when we need to end a loop.

 In these cases we use the break keyword.

Preview from Notesale.co.uk

Page 78 of 212

 "Brave Knight Runs Away" ,

 "Papperbok Review: Totally Triffic"]

 news_ticker = ""

 # write your loop here

 print (news_ticker)

 Zip and Enumerate:

 zip and enumerate are useful built-in functions that can come in handy when dealing

 with loops.

 Zip:

 zip returns an iterator that combines multiple iterables into one sequence of tuples.

 Each tuple contains the elements in that position from all the iterables. For example,

 printing

 manifest = [("bananas", 15), ("mattresses", 24), ("dog kennels", 42),

 ("machine", 120), ("cheeses", 5)]

 []

 items = ['bananas' , 'mattresses' , 'dog kennels' , 'machine' , 'cheeses']

Preview from Notesale.co.uk

Page 83 of 212

 points = []

 # write your for loop here

 for point in points:

 print (point)

 Question:

 Use zip to create a dictionary cast that uses names as keys and heights as values.

 []

 cast_names = ["Joey Tribbiani" , "Monica Geller" , "Chandler Bing" ,

 , "Ross Geller" , "Phoebe Buffay"]

 cast_heights = [172 , 168 , 172 , 166 , 170]

 cast = # replace with your code

 print (cast)

 Question:

 Use zip to transpose data from a 4-by-3 matrix to a 3-by-4 matrix.

Preview from Notesale.co.uk

Page 87 of 212

 []

 data = ((0 , 1 , 2), (3 , 4 , 5), (6 , 7 , 8), (9 , 10 , 11))

 data_transpose = # replace with your code

 print (data_transpose)

 Question:

 Use enumerate to modify the cast list so that each element contains the name

 followed by the character's corresponding income in $ 1000. For example, the first

 element of cast should change from "Barney Stinson" to "Barney Stinson 150".

 []

 cast = ["Barney Stinson" , "Robin Scherbatsky" , "Ted Mosby" ,

 "Lily Aldrin" , "Marshall Eriksen"]

 heights = [150 , 100 , 40 , 0 , 80]

 # write your for loop here

 print (cast)

 List Comprehensions:

Preview from Notesale.co.uk

Page 88 of 212

 List comprehensions allow us to create a list using a for loop in one step.

 You create a list comprehension with brackets [], including an expression to evaluate

 for each element in an iterable. This list comprehension above calls city.title() for

 each element city in cities, to create each element in the new list, capitalized_cities.

 Conditionals in List Comprehensions:

 You can also add conditionals to list comprehensions (listcomps).

 Lets look at an example:

 []

 squares = []

 for x in range (9):

 squares.append(x** 2)

 print (squares)

 [0, 1, 4, 9, 16, 25, 36, 49, 64]

 writing the same as a list comprehension will be like:

 []

 squares = [x** 2 for x in range (9)]

Preview from Notesale.co.uk

Page 90 of 212

 # To define a function we first write the keyword "def" followed by "name of the function" and round

 paranthesis "()".

 def Fun_Name():

 ## Here we just defined a function

 ## The name of the function is Fun_Name

 ## COOL XD

 2. Writing the Function body

 After defining the function now you need to write the body of the function which is

 the working of youe function i.e. what you want your function to do for you

 def Hello():

 print('Hello')

 The code above will print Hello whenever you call the function.

 Don't worry we will see calling function in details later...

 []

 #LET'S TRY THE ABOVE CODE

 def Hello ():

 print ('Hello')

Preview from Notesale.co.uk

Page 95 of 212

 print (Sub(5 , 2)) #EXPEXTED OUTPUT: 3

 3

 Components of a Lambda Function:

 1. The lambda keyword is used to indicate that this is a lambda expression.

 2. Following lambda are one or more arguments for the anonymous function

 separated by commas, followed by a colon :. Similar to functions, the way the

 arguments are named in a lambda expression is arbitrary.

 3. Last is an expression that is evaluated and returned in this function. This is a

 lot like an expression you might see as a return statement in a function.

 With this structure, lambda expressions aren’t ideal for complex functions, but can

 be very useful for short, simple functions.

 Question:

 map() is a higher-order built-in function that takes a function and iterable as inputs,

 and returns an iterator that applies the function to each element of the iterable. The

 code below uses map() to find the mean of each list in numbers to create the list

 averages. Give it a test run to see what happens.

 Rewrite this code to be more concise by replacing the mean function with a lambda

 expression defined within the call to map().

 []

 numbers = [

Preview from Notesale.co.uk

Page 106 of 212

 # We create a 3 x 2 ndarray full of ones.

 X = np.ones((3 , 2))

 # We print X

 print ()

 print ('X = \n' , X)

 print ()

 # We print information about X

 print ('X has dimensions:' , X.shape)

 print ('X is an object of type:' , type (X))

 print ('The elements in X are of type:' , X.dtype)

 X =

 [[1. 1.]

 [1. 1.]

 [1. 1.]]

 X has dimensions: (3, 2)

 X is an object of type: <class 'numpy.ndarray'>

 The elements in X are of type: float64

 np.full():

 We can also create an ndarray with a specified shape that is full of any number we want. We can

 do this by using the np.full() function. The np.full(shape, constant value) function takes two

 arguments. The first argument is the shape of the ndarray you want to make and the second is

 the constant value you want to populate the array with. Let's see an example:

 In [13]:

Preview from Notesale.co.uk

Page 122 of 212

 print ('Reshaped x = \n' , x)

 print ()

 # We print information about the reshaped x

 print ('x has dimensions:' , x.shape)

 print ('x is an object of type:' , type (x))

 print ('The elements in x are of type:' , x.dtype)

 Original x = [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]

 Reshaped x =

 [[0 1 2 3 4]

 [5 6 7 8 9]

 [10 11 12 13 14]

 [15 16 17 18 19]]

 x has dimensions: (4, 5)

 x is an object of type: <class 'numpy.ndarray'>

 The elements in x are of type: int64

 One great feature about NumPy, is that some functions can also be applied as methods. This

 allows us to apply different functions in sequence in just one line of code. ndarray methods are

 similar to ndarray attributes in that they are both applied using dot notation (.). Let's see how we

 can accomplish the same result as in the above example, but in just one line of code:

 In [23]:

 # We create a a rank 1 ndarray with sequential integers from 0 to 19

 and

 # reshape it to a 4 x 5 array

Preview from Notesale.co.uk

Page 131 of 212

 [7 8 9]]

 Adding and Deleting elements:
 Now, let's take a look at how we can add and delete elements from ndarrays. We can delete

 elements using the np.delete(ndarray, elements, axis) function. This function deletes the given

 list of elements from the given ndarray along the specified axis. For rank 1 ndarrays the axis

 keyword is not required. For rank 2 ndarrays, axis = 0 is used to select rows, and axis = 1 is used

 to select columns. Let's see some examples:

 In [30]:

 # We create a rank 1 ndarray

 x = np.array([1 , 2 , 3 , 4 , 5])

 # We create a rank 2 ndarray

 Y = np.array([[1 , 2 , 3],[4 , 5 , 6],[7 , 8 , 9]])

 # We print x

 print ()

 print ('Original x = ' , x)

 # We delete the first and last element of x

 x = np.delete(x, [0 , 4])

 # We print x with the first and last element deleted

 print ()

 print ('Modified x = ' , x)

 # We print Y

 print ()

Preview from Notesale.co.uk

Page 142 of 212

 print ('Original Y = \n' , Y)

 # We delete the first row of y

 w = np.delete(Y, 0 , axis= 0)

 # We delete the first and last column of y

 v = np.delete(Y, [0 , 2], axis= 1)

 # We print w

 print ()

 print ('w = \n' , w)

 # We print v

 print ()

 print ('v = \n' , v)

 Original x = [1 2 3 4 5]

 Modified x = [2 3 4]

 Original Y =

 [[1 2 3]

 [4 5 6]

 [7 8 9]]

 w =

 [[4 5 6]

 [7 8 9]]

Preview from Notesale.co.uk

Page 143 of 212

 # We print x

 print ()

 print ('x = ' , x)

 # We print Y

 print ()

 print ('Original Y = \n' , Y)

 # We append a new row containing 7,8,9 to y

 v = np.append(Y, [[7 , 8 , 9]], axis= 0)

 # We append a new column containing 9 and 10 to y

 q = np.append(Y,[[9],[10]], axis= 1)

 # We print v

 print ()

 print ('v = \n' , v)

 # We print q

 print ()

 print ('q = \n' , q)

 Original x = [1 2 3 4 5]

 x = [1 2 3 4 5 6]

 x = [1 2 3 4 5 6 7 8]

Preview from Notesale.co.uk

Page 145 of 212

 # We create a rank 1 ndarray

 x = np.array([1 , 2])

 # We create a rank 2 ndarray

 Y = np.array([[3 , 4],[5 , 6]])

 # We print x

 print ()

 print ('x = ' , x)

 # We print Y

 print ()

 print ('Y = \n' , Y)

 # We stack x on top of Y

 z = np.vstack((x,Y))

 # We stack x on the right of Y. We need to reshape x in order to stack

 it on the right of Y.

 w = np.hstack((Y,x.reshape(2 , 1)))

 # We print z

 print ()

 print ('z = \n' , z)

 # We print w

 print ()

 print ('w = \n' , w)

Preview from Notesale.co.uk

Page 148 of 212

 {

 "nbformat": 4,

 "nbformat_minor": 0,

 "metadata": {

 "colab": {

 "name": "Day_6_Numpy_Part_2.ipynb",

 "provenance": []

 },

 "kernelspec": {

 "name": "python3",

 "display_name": "Python 3"

 }

 },

 "cells": [

 {

 "cell_type": "markdown",

 "metadata": {

 "id": "KhRg_FoegBcB",

 "colab_type": "text"

 },

 "source": [

 "## **Accessing Elements in ndarays:**\n",

 "Elements can be accessed using indices inside square brackets, []. NumPy allows you to

 use both positive and negative indices to access elements in the ndarray. Positive indices are

 used to access elements from the beginning of the array, while negative indices are used to

 access elements from the end of the array. "

]

 },

Preview from Notesale.co.uk

Page 149 of 212

],

 "execution_count": null,

 "outputs": [

 {

 "output_type": "stream",

 "text": [

 "\n",

 "X = \n",

 " [[1 2 3]\n",

 " [4 5 6]\n",

 " [7 8 9]]\n",

 "\n",

 "This is (0,0) Element in X: 1\n",

 "This is (0,1) Element in X: 2\n",

 "This is (2,2) Element in X: 9\n"

],

 "name": "stdout"

 }

]

 },

 {

 "cell_type": "markdown",

 "metadata": {

 "id": "TN6nKaJFgbyq",

 "colab_type": "text"

 },

 "source": [

 "Elements in rank 2 ndarrays can be modified in the same way as with rank 1 ndarrays.

 Let's see an example:"

Preview from Notesale.co.uk

Page 155 of 212

 "# We print x\n",

 "print()\n",

 "print('Original x = ', x)\n",

 "\n",

 "# We append the integer 6 to x\n",

 "x = np.append(x, 6)\n",

 "\n",

 "# We print x\n",

 "print()\n",

 "print('x = ', x)\n",

 "\n",

 "# We append the integer 7 and 8 to x\n",

 "x = np.append(x, [7,8])\n",

 "\n",

 "# We print x\n",

 "print()\n",

 "print('x = ', x)\n",

 "\n",

 "# We print Y\n",

 "print()\n",

 "print('Original Y = \\n', Y)\n",

 "\n",

 "# We append a new row containing 7,8,9 to y\n",

 "v = np.append(Y, [[7,8,9]], axis=0)\n",

 "\n",

 "# We append a new column containing 9 and 10 to y\n",

 "q = np.append(Y,[[9],[10]], axis=1)\n",

 "\n",

Preview from Notesale.co.uk

Page 162 of 212

 "\n",

 "# We insert a column full of 5s between the first and second column of y\n",

 "v = np.insert(Y,1,5, axis=1)\n",

 "\n",

 "# We print w\n",

 "print()\n",

 "print('w = \\n', w)\n",

 "\n",

 "# We print v\n",

 "print()\n",

 "print('v = \\n', v)"

],

 "execution_count": null,

 "outputs": [

 {

 "output_type": "stream",

 "text": [

 "\n",

 "Original x = [1 2 5 6 7]\n",

 "\n",

 "x = [1 2 3 4 5 6 7]\n",

 "\n",

 "Original Y = \n",

 " [[1 2 3]\n",

 " [7 8 9]]\n",

 "\n",

 "w = \n",

 " [[1 2 3]\n",

Preview from Notesale.co.uk

Page 166 of 212

 "print()\n",

 "print('z = \\n', z)\n",

 "\n",

 "# We print w\n",

 "print()\n",

 "print('w = \\n', w)"

],

 "execution_count": null,

 "outputs": [

 {

 "output_type": "stream",

 "text": [

 "\n",

 "x = [1 2]\n",

 "\n",

 "Y = \n",

 " [[3 4]\n",

 " [5 6]]\n",

 "\n",

 "z = \n",

 " [[1 2]\n",

 " [3 4]\n",

 " [5 6]]\n",

 "\n",

 "w = \n",

 " [[3 4 1]\n",

 " [5 6 2]]\n"

],

Preview from Notesale.co.uk

Page 169 of 212

 "We will now see some examples of how to use the above methods to select different

 subsets of a rank 2 ndarray.\n"

]

 },

 {

 "cell_type": "code",

 "metadata": {

 "id": "HP1atdZBg0Tg",

 "colab_type": "code",

 "colab": {

 "base_uri": "https://localhost:8080/"

 },

 "outputId": "96beec84-9af1-40ba-9f06-bd04c4e12e16"

 },

 "source": [

 "# We create a 4 x 5 ndarray that contains integers from 0 to 19\n",

 "X = np.arange(20).reshape(4, 5)\n",

 "\n",

 "# We print X\n",

 "print()\n",

 "print('X = \\n', X)\n",

 "print()\n",

 "\n",

 "# We select all the elements that are in the 2nd through 4th rows and in the 3rd to 5th

 columns\n",

 "Z = X[1:4,2:5]\n",

 "\n",

 "# We print Z\n",

 "print('Z = \\n', Z)\n",

Preview from Notesale.co.uk

Page 171 of 212

 "colab_type": "code",

 "colab": {

 "base_uri": "https://localhost:8080/",

 "height": 137

 },

 "outputId": "40e08849-c383-4111-d028-9df536f3f2a1"

 },

 "source": [

 "# We create an unsorted rank 1 ndarray\n",

 "x = np.random.randint(1,11,size=(10,))\n",

 "\n",

 "# We print x\n",

 "print()\n",

 "print('Original x = ', x)\n",

 "\n",

 "# We sort x and print the sorted array using sort as a function.\n",

 "print()\n",

 "print('Sorted x (out of place):', np.sort(x))\n",

 "\n",

 "# When we sort out of place the original array remains intact. To see this we print x

 again\n",

 "print()\n",

 "print('x after sorting:', x)"

],

 "execution_count": 4,

 "outputs": [

 {

 "output_type": "stream",

 "text": [

Preview from Notesale.co.uk

Page 185 of 212

 "colab_type": "text"

 },

 "source": [

 "When sorting rank 2 ndarrays, we need to specify to the np.sort() function whether we are

 sorting by rows or columns. This is done by using the axis keyword. Let's see some

 examples:\n"

]

 },

 {

 "cell_type": "code",

 "metadata": {

 "id": "XdZi81Q4IFv7",

 "colab_type": "code",

 "colab": {

 "base_uri": "https://localhost:8080/"

 },

 "outputId": "a4201ae6-6e75-4632-9e4c-86476dcc73f9"

 },

 "source": [

 "# We create an unsorted rank 2 ndarray\n",

 "X = np.random.randint(1,11,size=(5,5))\n",

 "\n",

 "# We print X\n",

 "print()\n",

 "print('Original X = \\n', X)\n",

 "print()\n",

 "\n",

 "# We sort the columns of X and print the sorted array\n",

 "print()\n",

Preview from Notesale.co.uk

Page 190 of 212

 {

 "cell_type": "markdown",

 "metadata": {

 "id": "sB3FyKXnNokr",

 "colab_type": "text"

 },

 "source": [

 "We can also apply mathematical functions, such as sqrt(x), to all elements of an ndarray at

 once."

]

 },

 {

 "cell_type": "code",

 "metadata": {

 "id": "gUpizA7QNmKU",

 "colab_type": "code",

 "colab": {

 "base_uri": "https://localhost:8080/",

 "height": 170

 },

 "outputId": "ac45f76b-69e7-4682-d310-e86fbc2f1c43"

 },

 "source": [

 "# We create a rank 1 ndarray\n",

 "x = np.array([1,2,3,4])\n",

 "\n",

 "# We print x\n",

 "print()\n",

 "print('x = ', x)\n",

Preview from Notesale.co.uk

Page 200 of 212

 },

 "source": [

 "# We create a 2 x 2 ndarray\n",

 "X = np.array([[1,2], [3,4]])\n",

 "\n",

 "# We print x\n",

 "print()\n",

 "print('X = \\n', X)\n",

 "print()\n",

 "\n",

 "print('3 * X = \\n', 3 * X)\n",

 "print()\n",

 "print('3 + X = \\n', 3 + X)\n",

 "print()\n",

 "print('X - 3 = \\n', X - 3)\n",

 "print()\n",

 "print('X / 3 = \\n', X / 3)"

],

 "execution_count": 14,

 "outputs": [

 {

 "output_type": "stream",

 "text": [

 "\n",

 "X = \n",

 " [[1 2]\n",

 " [3 4]]\n",

 "\n",

Preview from Notesale.co.uk

Page 206 of 212

 "In order to do element-wise operations, NumPy sometimes uses something called

 Broadcasting. Broadcasting is the term used to describe how NumPy handles element-wise

 arithmetic operations with ndarrays of different shapes. For example, broadcasting is used

 implicitly when doing arithmetic operations between scalars and ndarrays.\n",

 "\n",

 "In the examples above, NumPy is working behind the scenes to broadcast 3 along the

 ndarray so that they have the same shape. This allows us to add 3 to each element of X with just

 one line of code.\n",

 "\n",

 "Subject to certain constraints, Numpy can do the same for two ndarrays of different

 shapes, as we can see below."

]

 },

 {

 "cell_type": "code",

 "metadata": {

 "id": "sZdEElKmOIJE",

 "colab_type": "code",

 "colab": {

 "base_uri": "https://localhost:8080/",

 "height": 434

 },

 "outputId": "0ea5fd84-3656-4e88-d073-71d226fb872f"

 },

 "source": [

 "# We create a rank 1 ndarray\n",

 "x = np.array([1,2,3])\n",

 "\n",

 "# We create a 3 x 3 ndarray\n",

 "Y = np.array([[1,2,3],[4,5,6],[7,8,9]])\n",

Preview from Notesale.co.uk

Page 208 of 212

