
No. Questions
React Router

129 What is React Router?
130 How React Router is different from history library?
131 What are the <Router> components of React Router

v4?
132 What is the purpose of push and replace methods of

history?
133 How do you programmatically navigate using React

router v4?
134 How to get query parameters in React Router v4
135 Why you get “Router may have only one child element”

warning?
136 How to pass params to history.push method in React

Router v4?
137 How to implement default or NotFound page?
138 How to get history on React Router v4?
139 How to perform automatic redirect after login?

React Internationalization
140 What is React-Intl?
141 What are the main features of React Intl?
142 What are the two ways of formatting in React Intl?
143 How to use FormattedMessage as placeholder using

React Intl?
144 How to access current locale with React Intl
145 How to format date using React Intl?

React Testing
146 What is Shallow Renderer in React testing?
147 What is TestRenderer package in React?
148 What is the purpose of ReactTestUtils package?
149 What is Jest?
150 What are the advantages of Jest over Jasmine?
151 Give a simple example of Jest test case

React Redux
152 What is Flux?
153 What is Redux?
154 What are the core principles of Redux?
155 What are the downsides of Redux compared to Flux?
156 What is the difference between mapStateToProps() and

mapDispatchToProps()?
157 Can I dispatch an action in reducer?
158 How to access Redux store outside a component?
159 What are the drawbacks of MVW pattern
160 Are there any similarities between Redux and RxJS?
161 How to dispatch an action on load?

5

Preview from Notesale.co.uk

Page 5 of 157

No. Questions
232 In which scenarios error boundaries do not catch errors?
233 Why do you not need error boundaries for event

handlers?
234 What is the difference between try catch block and

error boundaries?
235 What is the behavior of uncaught errors in react 16?
236 What is the proper placement for error boundaries?
237 What is the benefit of component stack trace from error

boundary?
238 What is the required method to be defined for a class

component?
239 What are the possible return types of render method?
240 What is the main purpose of constructor?
241 Is it mandatory to define constructor for React

component?
242 What are default props?
243 Why should not call setState in

componentWillUnmount?
244 What is the purpose of getDerivedStateFromError?
245 What is the methods order when component

re-rendered?
246 What are the methods invoked during error handling?
247 What is the purpose of displayName class property?
248 What is the browser support for react applications?
249 What is the purpose of unmountComponentAtNode

method?
250 What is code-splitting?
251 What is the benefit of strict mode?
252 What are Keyed Fragments?
253 Does React support all HTML attributes?
254 What are the limitations with HOCs?
255 How to debug forwardRefs in DevTools?
256 When component props defaults to true?
257 What is NextJS and major features of it?
258 How do you pass an event handler to a component?
259 Is it good to use arrow functions in render methods?
260 How to prevent a function from being called multiple

times?
261 How JSX prevents Injection Attacks?
262 How do you update rendered elements?
263 How do you say that props are read only?
264 How do you say that state updates are merged?
265 How do you pass arguments to an event handler?
266 How to prevent component from rendering?

8

Preview from Notesale.co.uk

Page 8 of 157

No. Questions
267 What are the conditions to safely use the index as a

key?
268 Is it keys should be globally unique?
269 What is the popular choice for form handling?
270 What are the advantages of formik over redux form

library?
271 Why do you not required to use inheritance?
272 Can I use web components in react application?
273 What is dynamic import?
274 What are loadable components?
275 What is suspense component?
276 What is route based code splitting?
277 Give an example on How to use context?
278 What is the purpose of default value in context?
279 How do you use contextType?
280 What is a consumer?
281 How do you solve performance corner cases while using

context?
282 What is the purpose of forward ref in HOCs?
283 Is it ref argument available for all functions or class

components?
284 Why do you need additional care for component

libraries while using forward refs?
285 How to create react class components without ES6?
286 Is it possible to use react without JSX?
287 What is diffing algorithm?
288 What are the rules covered by diffing algorithm?
289 When do you need to use refs?
290 Is it prop must be named as render for render props?
291 What are the problems of using render props with pure

components?
292 How do you create HOC using render props?
293 What is windowing technique?
294 How do you print falsy values in JSX?
295 What is the typical use case of portals?
296 How do you set default value for uncontrolled

component?
297 What is your favorite React stack?
298 What is the difference between Real DOM and Virtual

DOM?
299 How to add Bootstrap to a react application?
300 Can you list down top websites or applications using

react as front end framework?
301 Is it recommended to use CSS In JS technique in React?

9

Preview from Notesale.co.uk

Page 9 of 157

“jsx harmony function Greeting({ message }) { return
<h1>{Hello, ${message}‘}

} “‘

2. Class Components: You can also use ES6 class to define a compo-
nent. The above function component can be written as:

jsx harmony class Greeting extends React.Component {
render() { return <h1>{`Hello, ${this.props.message}`}</h1>
} }

� Back to Top

6.

When to use a Class Component over a Function Component?

If the component needs state or lifecycle methods then use class compo-
nent otherwise use function component. However, from React 16.8 with
the addition of Hooks, you could use state , lifecycle methods and other
features that were only available in class component right in your function
component. So, it is always recommended to use Function components, un-
less you need a React functionality whose Function component equivalent
is not present yet, like Error Boundaries

� Back to Top

7.

What are Pure Components?

React.PureComponent is exactly the same as React.Component except
that it handles the shouldComponentUpdate() method for you. When
props or state changes, PureComponent will do a shallow comparison on
both props and state. Component on the other hand won’t compare cur-
rent props and state to next out of the box. Thus, the component will
re-render by default whenever shouldComponentUpdate is called.

� Back to Top

8.

What is state in React?

State of a component is an object that holds some information that may
change over the lifetime of the component. We should always try to make
our state as simple as possible and minimize the number of stateful com-
ponents.

Let’s create a user component with message state,

13

Preview from Notesale.co.uk

Page 13 of 157

33.

What are the different phases of component lifecycle?

The component lifecycle has three distinct lifecycle phases:

1. Mounting: The component is ready to mount in the browser
DOM. This phase covers initialization from constructor(),
getDerivedStateFromProps(), render(), and componentDidMount()
lifecycle methods.

2. Updating: In this phase, the component gets updated in
two ways, sending the new props and updating the state ei-
ther from setState() or forceUpdate(). This phase cov-
ers getDerivedStateFromProps(), shouldComponentUpdate(),
render(), getSnapshotBeforeUpdate() and componentDidUpdate()
lifecycle methods.

3. Unmounting: In this last phase, the component is not needed
and gets unmounted from the browser DOM. This phase includes
componentWillUnmount() lifecycle method.

It’s worth mentioning that React internally has a concept of phases when
applying changes to the DOM. They are separated as follows

1. Render The component will render without any side effects. This
applies to Pure components and in this phase, React can pause, abort,
or restart the render.

2. Pre-commit Before the component actually applies the changes to
the DOM, there is a moment that allows React to read from the
DOM through the getSnapshotBeforeUpdate().

3. Commit React works with the DOM and executes the fi-
nal lifecycles respectively componentDidMount() for mounting,
componentDidUpdate() for updating, and componentWillUnmount()
for unmounting.

React 16.3+ Phases (or an interactive version)

Before React 16.3

� Back to Top

34.

What are the lifecycle methods of React?

Before React 16.3

• componentWillMount: Executed before rendering and is used for
App level configuration in your root component.

26

Preview from Notesale.co.uk

Page 26 of 157

Passing props:

class MyComponent extends React.Component {
constructor(props) {

super(props)

console.log(this.props) // prints { name: 'John', age: 42 }
}

}

Not passing props:

class MyComponent extends React.Component {
constructor(props) {

super()

console.log(this.props) // prints undefined

// but props parameter is still available
console.log(props) // prints { name: 'John', age: 42 }

}

render() {
// no difference outside constructor
console.log(this.props) // prints { name: 'John', age: 42 }

}
}

The above code snippets reveals that this.props is different only within
the constructor. It would be the same outside the constructor.

� Back to Top

41.

What is reconciliation?

When a component’s props or state change, React decides whether an
actual DOM update is necessary by comparing the newly returned element
with the previously rendered one. When they are not equal, React will
update the DOM. This process is called reconciliation.

� Back to Top

42.

How to set state with a dynamic key name?

If you are using ES6 or the Babel transpiler to transform your JSX code
then you can accomplish this with computed property names.

31

Preview from Notesale.co.uk

Page 31 of 157

Why React uses className over class attribute?

class is a keyword in JavaScript, and JSX is an extension of JavaScript.
That’s the principal reason why React uses className instead of class.
Pass a string as the className prop.

jsx harmony render() { return <span className={'menu
navigation-menu'}>{'Menu'} }

� Back to Top

46.

What are fragments?

It’s a common pattern in React which is used for a component to return
multiple elements. Fragments let you group a list of children without
adding extra nodes to the DOM.

jsx harmony render() { return (<React.Fragment>
<ChildA /> <ChildB /> <ChildC /> </React.Fragment>
) }

There is also a shorter syntax, but it’s not supported in many tools:

jsx harmony render() { return (<> <ChildA />
<ChildB /> <ChildC /> </>) }

� Back to Top

47.

Why fragments are better than container divs?

Below are the list of reasons,

1. Fragments are a bit faster and use less memory by not creating an
extra DOM node. This only has a real benefit on very large and deep
trees.

2. Some CSS mechanisms like Flexbox and CSS Grid have a special
parent-child relationships, and adding divs in the middle makes it
hard to keep the desired layout.

3. The DOM Inspector is less cluttered.

� Back to Top

48.

What are portals in React?

Portal is a recommended way to render children into a DOM node that
exists outside the DOM hierarchy of the parent component.

33

Preview from Notesale.co.uk

Page 33 of 157

return (
// JSX

)
}

� Back to Top

51.

How to apply validation on props in React?

When the application is running in development mode, React will auto-
matically check all props that we set on components to make sure they
have correct type. If the type is incorrect, React will generate warning mes-
sages in the console. It’s disabled in production mode due to performance
impact. The mandatory props are defined with isRequired.

The set of predefined prop types:

1. PropTypes.number
2. PropTypes.string
3. PropTypes.array
4. PropTypes.object
5. PropTypes.func
6. PropTypes.node
7. PropTypes.element
8. PropTypes.bool
9. PropTypes.symbol

10. PropTypes.any

We can define propTypes for User component as below:

“‘jsx harmony import React from ‘react’ import PropTypes from ‘prop-
types’

class User extends React.Component { static propTypes = { name: Prop-
Types.string.isRequired, age: PropTypes.number.isRequired }

render() { return (<>

{Welcome, ${this.props.name}}

<h2>{`Age, ${this.props.age}`}</h2>
</>

)

} }

Note: In React v15.5 *PropTypes* were moved from `React.PropTypes` to `prop-types` library.

The Equivalent Functional Component

35

Preview from Notesale.co.uk

Page 35 of 157


```jsx harmony
import React from 'react'
import PropTypes from 'prop-types'

function User({name, age}) {
return (
<>
<h1>{`Welcome, ${name}`}</h1>
<h2>{`Age, ${age}`}</h2>

</>
)

}

User.propTypes = {
name: PropTypes.string.isRequired,
age: PropTypes.number.isRequired

}

� Back to Top

52.

What are the advantages of React?

Below are the list of main advantages of React,

1. Increases the application’s performance with Virtual DOM.
2. JSX makes code easy to read and write.
3. It renders both on client and server side (SSR).
4. Easy to integrate with frameworks (Angular, Backbone) since it is

only a view library.
5. Easy to write unit and integration tests with tools such as Jest.

� Back to Top

53.

What are the limitations of React?

Apart from the advantages, there are few limitations of React too,

1. React is just a view library, not a full framework.
2. There is a learning curve for beginners who are new to web develop-

ment.
3. Integrating React into a traditional MVC framework requires some

additional configuration.
4. The code complexity increases with inline templating and JSX.

36

Preview from Notesale.co.uk

Page 36 of 157



server-side rendering (SSR). The following methods can be used in both
the server and browser environments:

1. renderToString()
2. renderToStaticMarkup()

For example, you generally run a Node-based web server like Express,
Hapi, or Koa, and you call renderToString to render your root component
to a string, which you then send as response.

// using Express
import { renderToString } from 'react-dom/server'
import MyPage from './MyPage'

app.get('/', (req, res) => {
res.write('<!DOCTYPE html><html><head><title>My Page</title></head><body>')
res.write('<div id="content">')
res.write(renderToString(<MyPage/>))
res.write('</div></body></html>')
res.end()

})

� Back to Top

60.

How to use innerHTML in React?

The dangerouslySetInnerHTML attribute is React’s replacement for using
innerHTML in the browser DOM. Just like innerHTML, it is risky to use
this attribute considering cross-site scripting (XSS) attacks. You just need
to pass a __html object as key and HTML text as value.

In this example MyComponent uses dangerouslySetInnerHTML attribute
for setting HTML markup:

“‘jsx harmony function createMarkup() { return { __html: ‘First · Sec-
ond’ } }

function MyComponent() { return

} “‘

� Back to Top

61.

How to use styles in React?

The style attribute accepts a JavaScript object with camelCased prop-
erties rather than a CSS string. This is consistent with the DOM style
JavaScript property, is more efficient, and prevents XSS security holes.

39

Preview from Notesale.co.uk

Page 39 of 157



“‘jsx harmony const divStyle = { color: ‘blue’, backgroundImage: ‘url(’ +
imgUrl + ‘)’ };

function HelloWorldComponent() { return

Hello World!

} “‘

Style keys are camelCased in order to be consistent with accessing the prop-
erties on DOM nodes in JavaScript (e.g. node.style.backgroundImage).

� Back to Top

62.

How events are different in React?

Handling events in React elements has some syntactic differences:

1. React event handlers are named using camelCase, rather than lower-
case.

2. With JSX you pass a function as the event handler, rather than a
string.

� Back to Top

63.

What will happen if you use setState() in constructor?

When you use setState(), then apart from assigning to the object state
React also re-renders the component and all its children. You would get
error like this: Can only update a mounted or mounting component. So
we need to use this.state to initialize variables inside constructor.

� Back to Top

64.

What is the impact of indexes as keys?

Keys should be stable, predictable, and unique so that React can keep
track of elements.

In the below code snippet each element’s key will be based on ordering,
rather than tied to the data that is being represented. This limits the
optimizations that React can do.

jsx harmony {todos.map((todo, index) => <Todo {...todo}
key={index} /> )}

40

Preview from Notesale.co.uk

Page 40 of 157



What is the difference between super() and super(props) in Re-
act using ES6 classes?

When you want to access this.props in constructor() then you should
pass props to super() method.

Using super(props):

class MyComponent extends React.Component {
constructor(props) {

super(props)
console.log(this.props) // { name: 'John', ... }

}
}

Using super():

class MyComponent extends React.Component {
constructor(props) {

super()
console.log(this.props) // undefined

}
}

Outside constructor() both will display same value for this.props.

� Back to Top

92.

How to loop inside JSX?

You can simply use Array.prototype.map with ES6 arrow function syn-
tax.

For example, the items array of objects is mapped into an array of com-
ponents:

jsx harmony <tbody> {items.map(item => <SomeComponent
key={item.id} name={item.name} />)} </tbody>

But you can’t iterate using for loop:

jsx harmony <tbody> for (let i = 0; i < items.length; i++)
{ <SomeComponent key={items[i].id} name={items[i].name}
/> } </tbody>

This is because JSX tags are transpiled into function calls, and you can’t
use statements inside expressions. This may change thanks to do expres-
sions which are stage 1 proposal.

� Back to Top

54

Preview from Notesale.co.uk

Page 54 of 157



104.

Is it possible to use React without rendering HTML?

It is possible with latest version (>=16.2). Below are the possible options:

jsx harmony render() { return false }

jsx harmony render() { return null }

jsx harmony render() { return [] }

jsx harmony render() { return <React.Fragment></React.Fragment>
}

jsx harmony render() { return <></> }

Returning undefined won’t work.

� Back to Top

105.

How to pretty print JSON with React?

We can use <pre> tag so that the formatting of the JSON.stringify() is
retained:

“‘jsx harmony const data = { name: ‘John’, age: 42 }

class User extends React.Component { render() { return (

)

} }

React.render(, document.getElementById(‘container’)) “‘

� Back to Top

106.

Why you can’t update props in React?

The React philosophy is that props should be immutable and top-down.
This means that a parent can send any prop values to a child, but the
child can’t modify received props.

� Back to Top

107.

59

Preview from Notesale.co.uk

Page 59 of 157



3. There is no nice Flow integration yet: Flux currently lets you
do very impressive static type checks which Redux doesn’t support
yet.

� Back to Top

156.

What is the difference between mapStateToProps() and
mapDispatchToProps()?

mapStateToProps() is a utility which helps your component get updated
state (which is updated by some other components):

const mapStateToProps = (state) => {
return {
todos: getVisibleTodos(state.todos, state.visibilityFilter)

}
}

mapDispatchToProps() is a utility which will help your component to fire
an action event (dispatching action which may cause change of application
state):

const mapDispatchToProps = (dispatch) => {
return {
onTodoClick: (id) => {
dispatch(toggleTodo(id))

}
}

}

It is recommended to always use the “object shorthand” form for the
mapDispatchToProps.

Redux wraps it in another function that looks like (…args) => dis-
patch(onTodoClick(…args)), and pass that wrapper function as a prop to
your component.

const mapDispatchToProps = ({
onTodoClick

})

� Back to Top

157.

Can I dispatch an action in reducer?

Dispatching an action within a reducer is an anti-pattern. Your reducer
should be without side effects, simply digesting the action payload and

79

Preview from Notesale.co.uk

Page 79 of 157



returning a new state object. Adding listeners and dispatching actions
within the reducer can lead to chained actions and other side effects.

� Back to Top

158.

How to access Redux store outside a component?

You just need to export the store from the module where it created with
createStore(). Also, it shouldn’t pollute the global window object.

store = createStore(myReducer)

export default store

� Back to Top

159.

What are the drawbacks of MVW pattern?

1. DOM manipulation is very expensive which causes applications to
behave slow and inefficient.

2. Due to circular dependencies, a complicated model was created
around models and views.

3. Lot of data changes happens for collaborative applications(like
Google Docs).

4. No way to do undo (travel back in time) easily without adding so
much extra code.

� Back to Top

160.

Are there any similarities between Redux and RxJS?

These libraries are very different for very different purposes, but there are
some vague similarities.

Redux is a tool for managing state throughout the application. It is usually
used as an architecture for UIs. Think of it as an alternative to (half of)
Angular. RxJS is a reactive programming library. It is usually used as
a tool to accomplish asynchronous tasks in JavaScript. Think of it as an
alternative to Promises. Redux uses the Reactive paradigm because the
Store is reactive. The Store observes actions from a distance, and changes
itself. RxJS also uses the Reactive paradigm, but instead of being an
architecture, it gives you basic building blocks, Observables, to accomplish
this pattern.

� Back to Top

80

Preview from Notesale.co.uk

Page 80 of 157



For example, you can add redux-thunk and logger passing them as ar-
guments to applyMiddleware():

import { createStore, applyMiddleware } from 'redux'
const createStoreWithMiddleware = applyMiddleware(ReduxThunk, logger)(createStore)

� Back to Top

186.

How to set initial state in Redux?

You need to pass initial state as second argument to createStore:

const rootReducer = combineReducers({
todos: todos,
visibilityFilter: visibilityFilter

})

const initialState = {
todos: [{ id: 123, name: 'example', completed: false }]

}

const store = createStore(
rootReducer,
initialState

)

� Back to Top

187.

How Relay is different from Redux?

Relay is similar to Redux in that they both use a single store. The main
difference is that relay only manages state originated from the server, and
all access to the state is used via GraphQL queries (for reading data)
and mutations (for changing data). Relay caches the data for you and
optimizes data fetching for you, by fetching only changed data and nothing
more.

188.

What is an action in Redux?

Actions are plain JavaScript objects or payloads of information that send
data from your application to your store. They are the only source of
information for the store. Actions must have a type property that indicates
the type of action being performed.

For example, let’s take an action which represents adding a new todo item:

92

Preview from Notesale.co.uk

Page 92 of 157



PropTypes is a basic type checker (runtime checker) which has been
patched onto React. It can’t check anything other than the types of
the props being passed to a given component. If you want more flexible
typechecking for your entire project Flow/TypeScript are appropriate
choices.

� Back to Top

195.

How to use Font Awesome icons in React?

The below steps followed to include Font Awesome in React:

1. Install font-awesome:

$ npm install --save font-awesome

2. Import font-awesome in your index.js file:

import 'font-awesome/css/font-awesome.min.css'

3. Add Font Awesome classes in className:

render() {
return <div><i className={'fa fa-spinner'} /></div>

}

� Back to Top

196.

What is React Dev Tools?

React Developer Tools let you inspect the component hierarchy, including
component props and state. It exists both as a browser extension (for
Chrome and Firefox), and as a standalone app (works with other environ-
ments including Safari, IE, and React Native).

The official extensions available for different browsers or environments.

1. Chrome extension
2. Firefox extension
3. Standalone app (Safari, React Native, etc)

� Back to Top

197.

Why is DevTools not loading in Chrome for local files?

If you opened a local HTML file in your browser (file://...) then you
must first open Chrome Extensions and check Allow access to file
URLs.

95

Preview from Notesale.co.uk

Page 95 of 157



npx create-react-app my-app --typescript

# or

yarn create react-app my-app --typescript

But for lower versions of react scripts, just supply --scripts-version
option as react-scripts-ts while you create a new project.
react-scripts-ts is a set of adjustments to take the standard
create-react-app project pipeline and bring TypeScript into the mix.

Now the project layout should look like the following:

my-app/
�� .gitignore
�� images.d.ts
�� node_modules/
�� public/
�� src/
� �� ...
�� package.json
�� tsconfig.json
�� tsconfig.prod.json
�� tsconfig.test.json
�� tslint.json

Miscellaneous
� Back to Top

206.

What are the main features of Reselect library?

Let’s see the main features of Reselect library,

1. Selectors can compute derived data, allowing Redux to store the min-
imal possible state.

2. Selectors are efficient. A selector is not recomputed unless one of its
arguments changes.

3. Selectors are composable. They can be used as input to other selec-
tors.

207.

Give an example of Reselect usage? Let’s take calculations and
different amounts of a shipment order with the simplified usage of Reselect:

99

Preview from Notesale.co.uk

Page 99 of 157



}
}

**Note:** In React v16.3,

� Back to Top

216.

What is render hijacking in react?

The concept of render hijacking is the ability to control what a component
will output from another component. It means that you decorate your
component by wrapping it into a Higher-Order component. By wrapping,
you can inject additional props or make other changes, which can cause
changing logic of rendering. It does not actually enable hijacking, but by
using HOC you make your component behave differently.

� Back to Top

217.

What are HOC factory implementations?

There are two main ways of implementing HOCs in React.

1. Props Proxy (PP) and
2. Inheritance Inversion (II).

But they follow different approaches for manipulating the WrappedCom-
ponent.

Props Proxy

In this approach, the render method of the HOC returns a React Element
of the type of the WrappedComponent. We also pass through the props
that the HOC receives, hence the name Props Proxy.

function ppHOC(WrappedComponent) {
return class PP extends React.Component {
render() {

return <WrappedComponent {...this.props}/>
}

}
}

Inheritance Inversion

In this approach, the returned HOC class (Enhancer) extends the
WrappedComponent. It is called Inheritance Inversion because instead of
the WrappedComponent extending some Enhancer class, it is passively

104

Preview from Notesale.co.uk

Page 104 of 157



220.

What is the purpose of registerServiceWorker in React?

React creates a service worker for you without any configuration by default.
The service worker is a web API that helps you cache your assets and
other files so that when the user is offline or on a slow network, he/she
can still see results on the screen, as such, it helps you build a better user
experience, that’s what you should know about service worker for now.
It’s all about adding offline capabilities to your site.

import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';
import registerServiceWorker from './registerServiceWorker';

ReactDOM.render(<App />, document.getElementById('root'));
registerServiceWorker();

� Back to Top

221.

What is React memo function?

Class components can be restricted from re-rendering when their input
props are the same using PureComponent or shouldComponentUp-
date. Now you can do the same with function components by wrapping
them in React.memo.

const MyComponent = React.memo(function MyComponent(props) {
/* only rerenders if props change */
});

� Back to Top

222.

What is React lazy function?

The React.lazy function lets you render a dynamic import as a reg-
ular component. It will automatically load the bundle containing the
OtherComponent when the component gets rendered. This must return
a Promise which resolves to a module with a default export containing a
React component.

const OtherComponent = React.lazy(() => import('./OtherComponent'));

function MyComponent() {
return (

106

Preview from Notesale.co.uk

Page 106 of 157



<div>
<OtherComponent />

</div>
);
}

Note: React.lazy and Suspense is not yet available for server-side ren-
dering. If you want to do code-splitting in a server rendered app, we still
recommend React Loadable.

� Back to Top

223.

How to prevent unnecessary updates using setState?

You can compare the current value of the state with an existing state value
and decide whether to rerender the page or not. If the values are the same
then you need to return null to stop re-rendering otherwise return the
latest state value.

For example, the user profile information is conditionally rendered as fol-
lows,

getUserProfile = user => {
const latestAddress = user.address;
this.setState(state => {

if (state.address === latestAddress) {
return null;

} else {
return { title: latestAddress };

}
});

};

� Back to Top

224.

How do you render Array, Strings and Numbers in React 16
Version?

Arrays: Unlike older releases, you don’t need to make sure render
method return a single element in React16. You are able to return multiple
sibling elements without a wrapping element by returning an array.

For example, let us take the below list of developers,

const ReactJSDevs = () => {
return [

<li key="1">John</li>,

107

Preview from Notesale.co.uk

Page 107 of 157



2. Redux-Form calls your entire top-level Redux reducer multiple times
ON EVERY SINGLE KEYSTROKE. This way it increases input
latency for large apps.

3. Redux-Form is 22.5 kB minified gzipped whereas Formik is 12.7 kB

� Back to Top

271.

Why are you not required to use inheritance?

In React, it is recommended to use composition over inheritance to reuse
code between components. Both Props and composition give you all the
flexibility you need to customize a component’s look and behavior explic-
itly and safely. Whereas, If you want to reuse non-UI functionality be-
tween components, it is suggested to extract it into a separate JavaScript
module. Later components import it and use that function, object, or
class, without extending it.

� Back to Top

272.

Can I use web components in react application?

Yes, you can use web components in a react application. Even though
many developers won’t use this combination, it may require especially
if you are using third-party UI components that are written using Web
Components.

For example, let us use Vaadin date picker web component as below,

import React, { Component } from 'react';
import './App.css';
import '@vaadin/vaadin-date-picker';
class App extends Component {
render() {

return (
<div className="App">
<vaadin-date-picker label="When were you born?"></vaadin-date-picker>

</div>
);

}
}
export default App;

� Back to Top

273.

129

Preview from Notesale.co.uk

Page 129 of 157



refs get assigned to, and what types are exported. These changes can
break apps and other libraries that depend on the old behavior.

� Back to Top

285.

How to create react class components without ES6?

If you don’t use ES6 then you may need to use the create-react-class
module instead. For default props, you need to define getDefaultProps()
as a function on the passed object. Whereas for initial state, you have to
provide a separate getInitialState method that returns the initial state.

var Greeting = createReactClass({
getDefaultProps: function() {

return {
name: 'Jhohn'

};
},

getInitialState: function() {
return {message: this.props.message};

},
handleClick: function() {

console.log(this.state.message);
},
render: function() {

return <h1>Hello, {this.props.name}</h1>;
}

});

Note: If you use createReactClass then auto binding is available for all
methods. i.e, You don’t need to use .bind(this) with in constructor for
event handlers.

� Back to Top

286.

Is it possible to use react without JSX?

Yes, JSX is not mandatory for using React. Actually it is con-
venient when you don’t want to set up compilation in your build
environment. Each JSX element is just syntactic sugar for calling
React.createElement(component, props, ...children).

For example, let us take a greeting example with JSX,

class Greeting extends React.Component {
render() {

137

Preview from Notesale.co.uk

Page 137 of 157



� Back to Top

291.

What are the problems of using render props with pure compo-
nents?

If you create a function inside a render method, it negates the purpose
of pure component. Because the shallow prop comparison will always
return false for new props, and each render in this case will generate a
new value for the render prop. You can solve this issue by defining the
render function as instance method.

� Back to Top

292.

How do you create HOC using render props?

You can implement most higher-order components (HOC) using a regular
component with a render prop. For example, if you would prefer to have
a withMouse HOC instead of a component, you could easily create one
using a regular with a render prop.

function withMouse(Component) {
return class extends React.Component {
render() {

return (
<Mouse render={mouse => (
<Component {...this.props} mouse={mouse} />

)}/>
);

}
}

}

This way render props gives the flexibility of using either pattern.

� Back to Top

293.

What is windowing technique?

Windowing is a technique that only renders a small subset of your rows at
any given time, and can dramatically reduce the time it takes to re-render
the components as well as the number of DOM nodes created. If your
application renders long lists of data then this technique is recommended.
Both react-window and react-virtualized are popular windowing libraries

141

Preview from Notesale.co.uk

Page 141 of 157



311.

Do browsers understand JSX code?

No, browsers can’t understand JSX code. You need a transpiler to convert
your JSX to regular Javascript that browsers can understand. The most
widely used transpiler right now is Babel.

� Back to Top

312.

Describe about data flow in react?

React implements one-way reactive data flow using props which reduce
boilerplate and is easier to understand than traditional two-way data bind-
ing.

� Back to Top

313.

What is react scripts?

The react-scripts package is a set of scripts from the create-react-app
starter pack which helps you kick off projects without configuring. The
react-scripts start command sets up the development environment
and starts a server, as well as hot module reloading.

� Back to Top

314.

What are the features of create react app?

Below are the list of some of the features provided by create react app.

1. React, JSX, ES6, Typescript and Flow syntax support.
2. Autoprefixed CSS
3. CSS Reset/Normalize

4. A live development server
5. A fast interactive unit test runner with built-in support for coverage

reporting
6. A build script to bundle JS, CSS, and images for production, with

hashes and sourcemaps
7. An offline-first service worker and a web app manifest, meeting all

the Progressive Web App criteria.

� Back to Top

148

Preview from Notesale.co.uk

Page 148 of 157



What is the difference between async mode and concurrent
mode?

Both refers the same thing. Previously concurrent Mode being referred to
as “Async Mode” by React team. The name has been changed to highlight
React’s ability to perform work on different priority levels. So it avoids
the confusion from other approaches to Async Rendering.

� Back to Top

321.

Can I use javascript urls in react16.9?

Yes, you can use javascript: URLs but it will log a warning in the con-
sole. Because URLs starting with javascript: are dangerous by including
unsanitized output in a tag like <a href> and create a security hole.

const companyProfile = {
website: "javascript: alert('Your website is hacked')",

};
// It will log a warning
<a href={companyProfile.website}>More details</a>

Remember that the future versions will throw an error for javascript URLs.

� Back to Top

322.

What is the purpose of eslint plugin for hooks?

The ESLint plugin enforces rules of Hooks to avoid bugs. It assumes that
any function starting with ”use” and a capital letter right after it is a
Hook. In particular, the rule enforces that,

1. Calls to Hooks are either inside a PascalCase function (assumed to
be a component) or another useSomething function (assumed to be
a custom Hook).

2. Hooks are called in the same order on every render.

� Back to Top

323.

What is the difference between Imperative and Declarative in
React?

Imagine a simple UI component, such as a “Like” button. When you tap
it, it turns blue if it was previously grey, and grey if it was previously blue.

The imperative way of doing this would be:

151

Preview from Notesale.co.uk

Page 151 of 157


