
These notes are currently revised each year by John Bullinaria. They include sections based on
notes originally written by Mart́ın Escardó and revised by Manfred Kerber. All are members
of the School of Computer Science, University of Birmingham, UK.

c©School of Computer Science, University of Birmingham, UK, 2018

1

Preview from Notesale.co.uk

Page 2 of 126

• MakeList(element, list), which puts an element at the top of an existing list.

Using those, our last example list can be constructed as

MakeList(3, MakeList(1, MakeList(4, MakeList(2, MakeList(5, EmptyList))))).

and it is clearly possible to construct any list in this way.
This inductive approach to data structure creation is very powerful, and we shall use

it many times throughout these notes. It starts with the “base case”, the EmptyList, and
then builds up increasingly complex lists by repeatedly applying the “induction step”, the
MakeList(element, list) operator.

It is obviously also important to be able to get back the elements of a list, and we no
longer have an item index to use like we have with an array. The way to proceed is to note
that a list is always constructed from the first element and the rest of the list. So, conversely,
from a non-empty list it must always be possible to get the first element and the rest. This
can be done using the two selectors, also called accessor methods:

• first(list), and

• rest(list).

The selectors will only work for non-empty lists (and give an error or exception on the empty
list), so we need a condition which tells us whether a given list is empty:

• isEmpty(list)

This will need to be used to check every list before passing it to a selector.
We call everything a list that can be constructed by the constructors EmptyList and

MakeList, so that with the selectors first and rest and the condition isEmpty, the following
relationships are automatically satisfied (i.e. true):

• isEmpty(EmptyList)

• not isEmpty(MakeList(x, l)) (for any x and l)

• first(MakeList(x, l)) = x

• rest(MakeList(x, l)) = l

In addition to constructing and getting back the components of lists, one may also wish to
destructively change lists. This would be done by so-called mutators which change either the
first element or the rest of a non-empty list:

• replaceFirst(x, l)

• replaceRest(r, l)

For instance, with l = [3, 1, 4, 2, 5], applying replaceFirst(9, l) changes l to [9, 1, 4, 2, 5].
and then applying replaceRest([6, 2, 3, 4], l) changes it to [9, 6, 2, 3, 4].

We shall see that the concepts of constructors, selectors and conditions are common to
virtually all abstract data types. Throughout these notes, we will be formulating our data
representations and algorithms in terms of appropriate definitions of them.

13

Preview from Notesale.co.uk

Page 14 of 126

lists as arrays. However, that can be problematic because lists are conceptually not limited in
size, which means array based implementation with fixed-sized arrays can only approximate
the general concept. For many applications, this is not a problem because a maximal number
of list members can be determined a priori (e.g., the maximum number of students taking one
particular module is limited by the total number of students in the University). More general
purpose implementations follow a pointer based approach, which is close to the diagrammatic
representation given above. We will not go into the details of all the possible implementations
of lists here, but such information is readily available in the standard textbooks.

3.2 Recursion

We previously saw how iteration based on for-loops was a natural way to process collections of
items stored in arrays. When items are stored as linked-lists, there is no index for each item,
and recursion provides the natural way to process them. The idea is to formulate procedures
which involve at least one step that invokes (or calls) the procedure itself. We will now look
at how to implement two important derived procedures on lists, last and append, which
illustrate how recursion works.

To find the last element of a list l we can simply keep removing the first remaining item
till there are no more left. This algorithm can be written in pseudocode as:

last(l) {

if (isEmpty(l))

error(‘Error: empty list in last’)

elseif (isEmpty(rest(l)))

return first(l)

else

return last(rest(l))

}

The running time of this depends on the length of the list, and is proportional to that length,
since last is called as often as there are elements in the list. We say that the procedure
has linear time complexity , that is, if the length of the list is increased by some factor, the
execution time is increased by the same factor. Compared to the constant time complexity
which access to the last element of an array has, this is quite bad. It does not mean, however,
that lists are inferior to arrays in general, it just means that lists are not the ideal data
structure when a program has to access the last element of a long list very often.

Another useful procedure allows us to append one list l2 to another list l1. Again, this
needs to be done one item at a time, and that can be accomplished by repeatedly taking the
first remaining item of l1 and adding it to the front of the remainder appended to l2:

append(l1,l2) {

if (isEmpty(l1))

return l2

else

return MakeList(first(l1),append(rest(l1),l2))

}

The time complexity of this procedure is proportional to the length of the first list, l1, since
we have to call append as often as there are elements in l1.

15

Preview from Notesale.co.uk

Page 16 of 126

This algorithm works by repeatedly splitting the array into two segments, one going from left
to mid, and the other going from mid+ 1 to right, where mid is the position half way from
left to right, and where, initially, left and right are the leftmost and rightmost positions of
the array. Because the array is sorted, it is easy to see which of each pair of segments the
searched-for item x is in, and the search can then be restricted to that segment. Moreover,
because the size of the sub-array going from locations left to right is halved at each iteration
of the while-loop, we only need log2 n steps in either the average or worst case. To see that this
runtime behaviour is a big improvement, in practice, over the earlier linear-search algorithm,
notice that log2 1000000 is approximately 20, so that for an array of size 1000000 only 20
iterations are needed in the worst case of the binary-search algorithm, whereas 1000000 are
needed in the worst case of the linear-search algorithm.

With the binary search algorithm, it is not so obvious that we have taken proper care
of the boundary condition in the while loop. Also, strictly speaking, this algorithm is not
correct because it does not work for the empty array (that has size zero), but that can easily
be fixed. Apart from that, is it correct? Try to convince yourself that it is, and then try to
explain your argument-for-correctness to a colleague. Having done that, try to write down
some convincing arguments, maybe one that involves a loop invariant and one that doesn’t.
Most algorithm developers stop at the first stage, but experience shows that it is only when
we attempt to write down seemingly convincing arguments that we actually find all the subtle
mistakes. Moreover, it is not unusual to end up with a better/clearer algorithm after it has
been modified to make its correctness easier to argue.

It is worth considering whether linked-list versions of our two algorithms would work, or
offer any advantages. It is fairly clear that we could perform a linear search through a linked
list in essentially the same way as with an array, with the relevant pointer returned rather
than an index. Converting the binary search to linked list form is problematic, because there
is no efficient way to split a linked list into two segments. It seems that our array-based
approach is the best we can do with the data structures we have studied so far. However, we
shall see later how more complex data structures (trees) can be used to formulate efficient
recursive search algorithms.

Notice that we have not yet taken into account how much effort will be required to sort
the array so that the binary search algorithm can work on it. Until we know that, we cannot
be sure that using the binary search algorithm really is more efficient overall than using the
linear search algorithm on the original unsorted array. That may also depend on further
details, such as how many times we need to performa a search on the set of n items – just
once, or as many as n times. We shall return to these issues later. First we need to consider
in more detail how to compare algorithm efficiency in a reliable manner.

24

Preview from Notesale.co.uk

Page 25 of 126

so we can do something n times, or look for the nth item, etc. The classic example is the
recursive factorial function:

factorial(int n) {

if (n == 0) return 1

return n*factorial(n-1)

}

Another example, with two termination or base-case conditions, is a direct implementation
of the recursive definition of Fibonacci numbers (see Appendix A.5):

F(int n) {

if (n == 0) return 0

if (n == 1) return 1

return F(n-1) + F(n-2)

}

though this is an extremely inefficient algorithm for computing these numbers. Exercise: Show
that the time complexity of this algorithm is O(2n), and that there exists a straightforward
iterative algorithm that has only O(n) time complexity. Is it possible to create an O(n)
recursive algorithm to compute these numbers?

In most cases, however, we won’t need to worry about counters, because the relevant data
structure has a natural end point condition, such as isEmpty(x), that will bring the recursion
to an end.

39

Preview from Notesale.co.uk

Page 40 of 126

Chapter 7

Binary Search Trees

We now look at Binary Search Trees, which are a particular type of binary tree that provide
an efficient way of storing data that allows particular items to be found as quickly as possible.
Then we consider further elaborations of these trees, namely AVL trees and B-trees, which
operate more efficiently at the expense of requiring more sophisticated algorithms.

7.1 Searching with arrays or lists

As we have already seen in Chapter 4, many computer science applications involve searching
for a particular item in a collection of data. If the data is stored as an unsorted array or
list, then to find the item in question, one obviously has to check each entry in turn until the
correct one is found, or the collection is exhausted. On average, if there are n items, this will
take n/2 checks, and in the worst case, all n items will have to be checked. If the collection is
large, such as all items accessible via the internet, that will take too much time. We also saw
that if the items are sorted before storing in an array, one can perform binary search which
only requires log2 n checks in the average and worst cases. However, that involves an overhead
of sorting the array in the first place, or maintaining a sorted array if items are inserted or
deleted over time. The idea here is that, with the help of binary trees, we can speed up the
storing and search process without needing to maintain a sorted array.

7.2 Search keys

If the items to be searched are labelled by comparable keys, one can order them and store
them in such a way that they are sorted already. Being ‘sorted’ may mean different things
for different keys, and which key to choose is an important design decision.

In our examples, the search keys will, for simplicity, usually be integer numbers (such
as student ID numbers), but other choices occur in practice. For example, the comparable
keys could be words. In that case, comparability usually refers to the alphabetical order. If
w and t are words, we write w < t to mean that w precedes t in the alphabetical order. If
w = bed and t = sky then the relation w < t holds, but this is not the case if w = bed and
t = abacus. A classic example of a collection to be searched is a dictionary. Each entry of
the dictionary is a pair consisting of a word and a definition. The definition is a sequence
of words and punctuation symbols. The search key, in this example, is the word (to which a
definition is attached in the dictionary entry). Thus, abstractly , a dictionary is a sequence of

40

Preview from Notesale.co.uk

Page 41 of 126

allsmaller(tree t, value v) {

if (isEmpty(t))

return true

else

return ((root(t) < v) and allsmaller(left(t),v)

and allsmaller(right(t),v))

}

allbigger(tree t, value v) {

if (isEmpty(t))

return true

else

return ((root(t) > v) and allbigger(left(t),v)

and allbigger(right(t),v))

}

However, the simplest or most obvious algorithm is not always the most efficient. Exercise:
identify what is inefficient about this algorithm, and formulate a more efficient algorithm.

7.9 Sorting using binary search trees

Sorting is the process of putting a collection of items in order. We shall formulate and discuss
many sorting algorithms later, but we are already able to present one of them.

The node values stored in a binary search tree can be printed in ascending order by
recursively printing each left sub-tree, root, and right sub-tree in the right order as follows:

printInOrder(tree t) {

if (not isEmpty(t)) {

printInOrder(left(t))

print(root(t))

printInOrder(right(t))

}

}

Then, if the collection of items to be sorted is given as an array a of known size n, they can
be printed in sorted order by the algorithm:

sort(array a of size n) {

t = EmptyTree

for i = 0,1,...,n-1

t = insert(a[i],t)

printInOrder(t)

}

which starts with an empty tree, inserts all the items into it using insert(v, t) to give a
binary search tree, and then prints them in order using printInOrder(t). Exercise: modify
this algorithm so that instead of printing the sorted values, they are put back into the original
array in ascending order.

47

Preview from Notesale.co.uk

Page 48 of 126

Alternatively, one could define a heap tree as a complete binary tree such that the priority of
every node is higher than (or equal to) that of all its descendants. Or, as a complete binary
tree for which the priorities become smaller along every path down through the tree.

The most obvious difference between a binary heap tree and a binary search trees is that
the biggest number now occurs at the root rather than at the right-most node. Secondly,
whereas with binary search trees, the left and right sub-trees connected to a given parent
node play very different rôles, they are interchangeable in binary heap trees.

Three examples of binary trees that are valid heap trees are:

14

42 60

70

75

96

17 1044 72

80

90
9

8 8

1 3

9

3 2

1

and three which are not valid heap trees are:

6

5 4

3

6

5

4 3

6

5

4 3

the first because 5 > 4 violates the required priority ordering, the second because it is not
perfectly balanced and hence not complete, and the third because it is not complete due to
the node on the last level not being as far to the left as possible.

8.3 Basic operations on binary heap trees

In order to develop algorithms using an array representation, we need to allocate memory and
keep track of the largest position that has been filled so far, which is the same as the current
number of nodes in the heap tree. This will involve something like:

int MAX = 100 // Maximum number of nodes allowed

int heap[MAX+1] // Stores priority values of nodes of heap tree

int n = 0 // Largest position that has been filled so far

For heap trees to be a useful representation of priority queues, we must be able to insert new
nodes (or customers) with a given priority, delete unwanted nodes, and identify and remove
the top-priority node, i.e. the root (that is, ‘serve’ the highest priority customer). We also
need to be able to determine when the queue/tree is empty. Thus, assuming the priorities are
given by integers, we need a constructor, mutators/selectors, and a condition:

insert(int p, array heap, int n)

delete(int i, array heap, int n)

int root(array heap, int n)

boolean heapEmpty(array heap, int n)

Identifying whether the heap tree is empty, and getting the root and last leaf, is easy:

53

Preview from Notesale.co.uk

Page 54 of 126

array into a binary heap tree, and then the for loop moves each successive root one item at a
time into the correct position in the sorted array:

heapSort(array a, int n) {

heapify(a,n)

for(j = n ; j > 1 ; j--) {

swap a[1] and a[j]

bubbleDown(1,a,j-1)

}

}

It is clear from the swap step that the order of identical items can easily be reversed, so there
is no way to render the Heapsort algorithm stable.

The average and worst-case time complexities of the entire Heapsort algorithm are given
by the sum of two complexity functions, first that of heapify rearranging the original unsorted
array into a heap tree which is O(n), and then that of making the sorted array out of the
heap tree which is O(nlog2 n) coming from the O(n) bubble-downs each of which has O(log2 n)
complexity. Thus the overall average and worst-case complexities are both O(nlog2 n), and
we now have a sorting algorithm that achieves the theoretical best worst-case time complex-
ity. Using more sophisticated priority queues, such as Binomial or Fibonacci heaps, cannot
improve on this because they have the same delete time complexity.

A useful feature of Heapsort is that if only the largest m� n items need to be found and
sorted, rather than all n, the complexity of the second stage is only O(mlog2 n), which can
easily be less than O(n) and thus render the whole algorithm only O(n).

9.11 Divide and conquer algorithms

All the sorting algorithms considered so far work on the whole set of items together. Instead,
divide and conquer algorithms recursively split the sorting problem into more manageable
sub-problems. The idea is that it will usually be easier to sort many smaller collections of
items than one big one, and sorting single items is trivial. So we repeatedly split the given
collection into two smaller parts until we reach the ‘base case’ of one-item collections, which
require no effort to sort, and then merge them back together again. There are two main
approaches for doing this:

Assuming we are working on an array a of size n with entries a[0],...,a[n-1], then the
obvious approach is to simply split the set of indices. That is, we split the array at item n/2
and consider the two sub-arrays a[0],...,a[(n-1)/2] and a[(n+1)/2],...,a[n-1]. This
method has the advantage that the splitting of the collection into two collections of equal (or
nearly equal) size at each stage is easy. However, the two sorted arrays that result from each
split have to be merged together carefully to maintain the ordering. This is the underlying
idea for a sorting algorithm called mergesort .

Another approach would be to split the array in such a way that, at each stage, all the items
in the first collection are no bigger than all the items in the second collection. The splitting
here is obviously more complex, but all we have to do to put the pieces back together again
at each stage is to take the first sorted array followed by the second sorted array. This is the
underlying idea for a sorting algorithm called Quicksort .

We shall now look in detail at how these two approaches work in practice.

74

Preview from Notesale.co.uk

Page 75 of 126

9.14 Summary of comparison-based sorting algorithms

The following table summarizes the key properties of all the comparison-based sorting algo-
rithms we have considered:

Sorting Strategy Objects Worst case Average case Stable
Algorithm employed manipulated complexity complexity

Bubble Sort Exchange arrays O(n2) O(n2) Yes
Selection Sort Selection arrays O(n2) O(n2) No
Insertion Sort Insertion arrays/lists O(n2) O(n2) Yes
Treesort Insertion trees/lists O(n2) O(nlog2 n) Yes
Heapsort Selection arrays O(nlog2 n) O(nlog2 n) No
Quicksort D & C arrays O(n2) O(nlog2 n) Maybe
Mergesort D & C arrays/lists O(nlog2 n) O(nlog2 n) Yes

To see what the time complexities mean in practice, the following table compares the typical
run times of those of the above algorithms that operate directly on arrays:

Algorithm 128 256 512 1024 O1024 R1024 2048

Bubble Sort 54 221 881 3621 1285 5627 14497
Selection Sort 12 45 164 634 643 833 2497
Insertion Sort 15 69 276 1137 6 2200 4536
Heapsort 21 45 103 236 215 249 527
Quicksort 12 27 55 112 1131 1200 230
Quicksort2 6 12 24 57 1115 1191 134
Mergesort 18 36 88 188 166 170 409
Mergesort2 6 22 48 112 94 93 254

As before, arrays of the stated sizes are filled randomly, except O1024 that denotes an array
with 1024 entries which are already sorted, and R1024 that denotes an array which is sorted in
the reverse order. Quicksort2 and Mergesort2 are algorithms where the recursive procedure is
abandoned in favour of Selection Sort once the size of the array falls to 16 or below. It should
be emphasized again that these numbers are of limited accuracy, since they vary somewhat
depending on machine and language implementation.

What has to be stressed here is that there is no ‘best sorting algorithm’ in general, but
that there are usually good and bad choices of sorting algorithms for particular circumstances.
It is up to the program designer to make sure that an appropriate one is picked, depending
on the properties of the data to be sorted, how it is best stored, whether all the sorted items
are required rather than some sub-set, and so on.

9.15 Non-comparison-based sorts

All the above sorting algorithms have been based on comparisons of the items to be sorted,
and we have seen that we can’t get time complexity better than O(nlog2 n) with comparison
based algorithms. However, in some circumstances it is possible to do better than that with
sorting algorithms that are not based on comparisons.

81

Preview from Notesale.co.uk

Page 82 of 126

That is, we think of the strings as coding numbers in base 26.
Now it is quite easy to go from any number k (rather than a string) to a number from 0

to 10. For example, we can take the remainder the number leaves when divided by 11. This
is the C or Java modulus operation k % 11. So our hash function is

h(X1X2X3) = (k1 ∗ 262 + k2 ∗ 26 + k3)%11 = k%11.

This modulo operation, and modular arithmetic more generally, are widely used when con-
structing good hash functions.

As a simple example of a hash table in operation, assume that we now wish to insert the
following three-letter airport acronyms as keys (in this order) into our hash table: PHL, ORY,
GCM, HKG, GLA, AKL, FRA, LAX, DCA. To make this easier, it is a good idea to start by
listing the values the hash function takes for each of the keys:

Code PHL ORY GCM HKG GLA AKL FRA LAX DCA

h(X1X2X3) 4 8 6 4 8 7 5 1 1

It is clear already that we will have hash collisions to deal with.
We naturally start off with an empty table of the required size, i.e. 11:

Clearly we have to be able to tell whether a particular location in the array is still empty, or
whether it has already been filled. We can assume that there is a unique key or entry (which
is never associated with a record) which denotes that the position has not been filled yet.
However, for clarity, this key will not appear in the pictures we use.

Now we can begin inserting the keys in order. The number associated with the first item
PHL is 4, so we place it at index 4, giving:

PHL

Next is ORY, which gives us the number 8, so we get:

PHL ORY

Then we have GCM, with value 6, giving:

PHL GCM ORY

Then HKG, which also has value 4, results in our first collision since the corresponding position
has already been filled with PHL. Now we could, of course, try to deal with this by simply
saying the table is full, but this gives such poor performance (due to the frequency with which
collisions occur) that it is unacceptable.

10.7 Strategies for dealing with collisions

We now look at three standard approaches, of increasing complexity, for dealing with hash
collisions:

90

Preview from Notesale.co.uk

Page 91 of 126

Buckets. One obvious option is to reserve a two-dimensional array from the start. We can
think of each column as a bucket in which we throw all the elements which give a particular
result when the hash function is supplied, so the fifth column contains all the keys for which
the hash function evaluates to 4. Then we could put HKG into the slot ‘beneath’ PHL, and
GLA in the one beneath ORY, and continue filling the table in the order given until we reach:

0 1 2 3 4 5 6 7 8 9 10

LAX PHL FRA GCM AKL ORY

DCA HKG GLA

The disadvantage of this approach is that it has to reserve quite a bit more space than will be
eventually required, since it must take into account the likely maximal number of collisions.
Even while the table is still quite empty overall, collisions will become increasingly likely.
Moreover, when searching for a particular key, it will be necessary to search the entire column
associated with its expected position, at least until an empty slot is reached. If there is an
order on the keys, they can be stored in ascending order, which means we can use the more
efficient binary search rather than linear search, but the ordering will have an overhead of its
own. The average complexity of searching for a particular item depends on how many entries
in the array have been filled already. This approach turns out to be slower than the other
techniques we shall consider, so we shall not spend any more time on it, apart from noting
that it does prove useful when the entries are held in slow external storage.

Direct chaining. Rather than reserving entire sub-arrays (the columns above) for keys
that collide, one can instead create a linked list for the set of entries corresponding to each
key. The result for the above example can be pictured something like this:

LAX

DCA

FRA GCMPHL

HKG

AKL ORY

GLA

0 1 2 3 4 5 6 7 8 9 10

This approach does not reserve any space that will not be taken up, but has the disadvantage
that in order to find a particular item, lists will have to be traversed. However, adding the
hashing step still speeds up retrieval considerably.

We can compute the size of the average non-empty list occurring in the hash table as
follows. With n items in an array of size m, the probability than no items land in a particular
slot is q(n,m) = (m−1m)n. So the number of slots with at least one item falling in it is

N(n,m) = m.
(

1− q(n,m)
)

= m.
(

1− (
m− 1

m
)n
)

91

Preview from Notesale.co.uk

Page 92 of 126

and when searching for AKL we would know to continue beyond the exclamation mark. If,
on the other hand, we are trying to insert a key, then we can ignore any exclamation marks
and fill the position once again. This now does take care of all our problems, although if we
do a lot of deleting and inserting, we will end up with a table which is a bit of a mess. A large
number of exclamation marks means that we have to keep looking for a long time to find a
particular entry despite the fact that the load factor may not be all that high. This happens
if deletion is a frequent operation. In such cases, it may be better to re-fill a new hash table
again from scratch, or use another implementation.

Search complexity. The complexity of open addressing with linear probing is rather dif-
ficult to compute, so we will not attempt to present a full account of it here. If λ is once
again the load factor of the table, then a successful search can be shown to take 1

2(1 + 1
1−λ)

comparisons on average, while an unsuccessful search takes approximately 1
2(1 + 1

(1−λ)2). For

relatively small load factors, this is quite impressive, and even for larger ones, it is not bad.
Thus, the hash table time complexity for search is again constant, i.e. O(1).

Clustering. There is a particular problem with linear probing, namely what is known as
primary and secondary clustering . Consider what happens if we try to insert two keys that
have the same result when the hash function is applied to them. Take the above example
with hash table at the stage where we just inserted GLA:

HKG PHL GCM GLA ORY

If we next try to insert JFK we note that the hash function evaluates to 8 once again. So we
keep checking the same locations we only just checked in order to insert GLA. This seems a
rather inefficient way of doing this. This effect is known as primary clustering because the
new key JFK will be inserted close to the previous key with the same primary position, GLA.
It means that we get a continuous ‘block’ of filled slots, and whenever we try to insert any key
which is sent into the block by the hash function, we will have to test all locations until we
hit the end of the block, and then make such block even bigger by appending another entry
at its end. So these blocks, or clusters, keep growing, not only if we hit the same primary
location repeatedly, but also if we hit anything that is part of the same cluster. The last effect
is called secondary clustering . Note that searching for keys is also adversely affected by these
clustering effects.

10.9 Double Hashing

The obvious way to avoid the clustering problems of linear probing is to do something slightly
more sophisticated than trying every position to the left until we find an empty one. This is
known as double hashing . We apply a secondary hash function to tell us how many slots to
jump to look for an empty slot if a key’s primary position has been filled already.

Like the primary hash function, there are many possible choices of the secondary hash
function. In the above example, one thing we could do is take the same number k associated
with the three-character code, and use the result of integer division by 11, instead of the
remainder, as the secondary hash function. However, the resulting value might be bigger than
10, so to prevent the jump looping round back to, or beyond, the starting point, we first take

94

Preview from Notesale.co.uk

Page 95 of 126

An undirected graph is connected if every pair of vertices has a path connecting them. For
directed graphs, the notion of connectedness has two distinct versions: We say that a digraph
is weakly connected if for every two vertices A and B there is either a path from A to B or a
path from B to A. We say it is strongly connected if there are paths leading both ways. So,
in a weakly connected digraph, there may be two vertices i and j such that there exists no
path from i to j.

A graph clearly has many properties similar to a tree. In fact, any tree can be viewed
as a simple graph of a particular kind, namely one that is connected and contains no circles.
Because a graph, unlike a tree, does not come with a natural ‘starting point’ from which there
is a unique path to each vertex, it does not make sense to speak of parents and children in
a graph. Instead, if two vertices A and B are connected by an edge e, we say that they are
neighbours, and the edge connecting them is said to be incident to A and B. Two edges that
have a vertex in common (for example, one connecting A and B and one connecting B and C)
are said to be adjacent .

11.2 Implementing graphs

All the data structures we have considered so far were designed to hold certain information,
and we wanted to perform certain actions on them which mostly centred around inserting new
items, deleting particular items, searching for particular items, and sorting the collection. At
no time was there ever a connection between all the items represented, apart from the order in
which their keys appeared. Moreover, that connection was never something that was inherent
in the structure and that we therefore tried to represent somehow – it was just a property
that we used to store the items in a way which made sorting and searching quicker. Now, on
the other hand, it is the connections that are the crucial information we need to encode in
the data structure. We are given a structure which comes with specified connections, and we
need to design an implementation that efficiently keeps track of them.

Array-based implementation. The first underlying idea for array-based implementations
is that we can conveniently rename the vertices of the graph so that they are labelled by
non-negative integer indices, say from 0 to n − 1, if they do not have these labels already.
However, this only works if the graph is given explicitly, that is, if we know in advance how
many vertices there will be, and which pairs will have edges between them. Then we only
need to keep track of which vertex has an edge to which other vertex, and, for weighted
graphs, what the weights on the edges are. For unweighted graphs, we can do this quite easily
in an n × n two-dimensional binary array adj, also called a matrix , the so-called adjacency
matrix . In the case of weighted graphs, we instead have an n × n weight matrix weights.
The array/matrix representations for the two example graphs shown above are then:

A B C D E

0 1 2 3 4

A 0 0 1 0 1 0

B 1 0 0 1 0 0

C 2 1 0 0 0 1

D 3 0 0 1 0 1

E 4 0 0 0 0 0

A B C D E

0 1 2 3 4

A 0 0 1 ∞ 4 ∞
B 1 2 0 2 2 6

C 2 ∞ 3 0 2 1

D 3 ∞ ∞ ∞ 0 1

E 4 ∞ ∞ 3 2 0

100

Preview from Notesale.co.uk

Page 101 of 126

the algorithm finishes. However, before the algorithm finishes, D[z] is the best overestimate
we currently have of the distance from s to z. We initially have D[s] = 0, and set D[z] =∞
for all vertices z other than the start node s. Then the algorithm repeatedly decreases the
overestimates until it is no longer possible to decrease them further. When this happens, the
algorithm terminates, with each estimate fully constrained and said to be tight .

Improving estimates. The general idea is to look systematically for shortcuts. Suppose
that, for two given vertices u and z, it happens that D[u] + weight[u][z] < D[z]. Then there
is a way of going from s to u and then to z whose total length is smaller than the current
overestimate D[z] of the distance from s to z, and hence we can replace D[z] by this better
estimate. This corresponds to the code fragment

if (D[u] + weight[u][z] < D[z])

D[z] = D[u] + weight[u][z]

of the full algorithm given below. The problem is thus reduced to developing an algorithm that
will systematically apply this improvement so that (1) we eventually get the tight estimates
promised above, and (2) that is done as efficiently as possible.

Dijkstra’s algorithm, Version 1. The first version of such an algorithm is not as efficient
as it could be, but it is relatively simple and certainly correct. (It is always a good idea to
start with an inefficient simple algorithm, so that the results from it can be used to check
the operation of a more complex efficient algorithm.) The general idea is that, at each stage
of the algorithm’s operation, if an entry D[u] of the array D has the minimal value among
all the values recorded in D, then the overestimate D[u] must actually be tight, because the
improvement algorithm discussed above cannot possibly find a shortcut.

The following algorithm implements that idea:

// Input: A directed graph with weight matrix ‘weight’ and

// a start vertex ‘s’.

// Output: An array ‘D’ of distances as explained above.

// We begin by buiding the distance overestimates.

D[s] = 0 // The shortest path from s to itself has length zero.

for (each vertex z of the graph) {

if (z is not the start vertex s)

D[z] = infinity // This is certainly an overestimate.

}

// We use an auxiliary array ‘tight’ indexed by the vertices,

// that records for which nodes the shortest path estimates

// are ‘‘known’’ to be tight by the algorithm.

for (each vertex z of the graph) {

tight[z] = false

}

106

Preview from Notesale.co.uk

Page 107 of 126

Vertex D has minimal estimate, and so is tight.

Neighbour E has estimate unchanged.

|A B C D E

--------+---------------------------------------

D |0 1 3 3 4

tight |yes yes yes yes no

pred. |none A B B C

Vertex E has minimal estimate, and so is tight.

Neighbour C is already tight.

Neighbour D is already tight.

|A B C D E

--------+---------------------------------------

D |0 1 3 3 4

tight |yes yes yes yes yes

pred. |none A B B C

End of Dijkstra’s computation.

A shortest path from A to E is: A B C E.

Once it is clear what is happening at each stage, it is usually more convenient to adopt a
shorthand notation that allows the whole process to be represented in a single table. For
example, using a “*” to represent tight, the distance, status and predecessor for each node at
each stage of the above example can be listed more concisely as follows:

Stage | A B C D E

-------+--

1 | 0 oo oo oo oo

2 | 0 * 1 A oo 4 A oo

3 | 0 * 1 * A 3 B 3 B 7 B

4 | 0 * 1 * A 3 * B 3 B 4 C

5 | 0 * 1 * A 3 * B 3 * B 4 C

6 | 0 * 1 * A 3 * B 3 * B 4 * C

A shortest path from A to E is: A B C E.

Dijkstra’s algorithm, Version 2. The time complexity of Dijkstra’s algorithm can be
improved by making use of a priority queue (e.g., some form of heap) to keep track of which
node’s distance estimate becomes tight next. Here it is convenient to use the convention that
lower numbers have higher priority. The previous algorithm then becomes:

109

Preview from Notesale.co.uk

Page 110 of 126

sparse with e = O(n). That is, there are usually not many more edges than vertices, and in
this case the time complexity for both priority queue versions is O(nlog2 n), which is a clear
improvement over the previous O(n2) algorithm.

11.7 Shortest paths – Floyd’s algorithm

If we are not only interested in finding the shortest path from one specific vertex to all the
others, but the shortest paths between every pair of vertices, we could, of course, apply
Dijkstra’s algorithm to every starting vertex. But there is actually a simpler way of doing
this, known as Floyd’s algorithm. This maintains a square matrix ‘distance’ which contains
the overestimates of the shortest paths between every pair of vertices, and systematically
decreases the overestimates using the same shortcut idea as above. If we also wish to keep
track of the routes of the shortest paths, rather than just their lengths, we simply introduce
a second square matrix ‘predecessor’ to keep track of all the ‘previous vertices’.

In the algorithm below, we attempt to decrease the estimate of the distance from each
vertex s to each vertex z by going systematically via each possible vertex u to see whether
that is a shortcut; and if it is, the overestimate of the distance is decreased to the smaller
overestimate, and the predecessor updated:

// Store initial estimates and predecessors.

for (each vertex s) {

for (each vertex z) {

distance[s][z] = weight[s][z]

predecessor[s][z] = s

}

}

// Improve them by considering all possible shortcuts u.

for (each vertex u) {

for (each vertex s) {

for (each vertex z) {

if (distance[s][u]+distance[u][z] < distance[s][z]) {

distance[s][z] = distance[s][u]+distance[u][z]

predecessor[s][z] = predecessor[u][z]

}

}

}

}

As with Dijkstra’s algorithm, this can easily be adapted to the case of non-weighted graphs
by assigning a suitable weight matrix of 0s and 1s.

The time complexity here is clearly O(n3), since it involves three nested for loops of O(n).
This is the same complexity as running the O(n2) Dijkstra’s algorithm once for each of the n
possible starting vertices. In general, however, Floyd’s algorithm will be faster than Dijkstra’s,
even though they are both in the same complexity class, because the former performs fewer

111

Preview from Notesale.co.uk

Page 112 of 126

be a minimal spanning tree. Now we can repeat this process until we have replaced all the
edges in X1 that are not in Y , and we end up with the minimal spanning tree Xn = Y , which
completes the proof that Y is a minimal spanning tree.

The time complexity of the standard Prim’s algorithm is O(n2) because at each step we
need to choose a vertex to add to S, and then update the closest array, not dissimilar to
the simplest form of Dijkstra’s algorithm. However, as with Dijkstra’s algorithm, a Binary
or Binomial heap based priority queue can be used to speed things up by keeping track of
which is the minimal weight vertex to be added next. With an adjacency list representation,
this can bring the complexity down to O((e+n)log2 n). Finally, using the more sophisticated
Fibonacci heap for the priority queue can improve this further to O(e+nlog2 n). Thus, using
the optimal approach in each case, Prim’s algorithm is O(nlog2 n) for sparse graphs that have
e = O(n), and O(n2) for highly connected graphs that have e = O(n2).

Just as with Floyd’s versus Dijkstra’s algorithm, we should consider whether it eally is
necessary to process every vertex at each stage, because it could be sufficient to only check
actually existing edges. We therefore now consider an alternative edge-based strategy:

Kruskal’s algorithm – A greedy edge-based approach. This algorithm does not con-
sider the vertices directly at all, but builds a minimal spanning tree by considering and adding
edges as follows: Assume that we already have a collection of edges T . Then, from all the
edges not yet in T , choose one with minimal weight such that its addition to T does not
produce a circle, and add that to T . If we start with T being the empty set, and continue
until no more edges can be added, a minimal spanning tree will be produced. This approach
is known as Kruskal’s algorithm.

For the same graph as used for Prim’s algorithm, this algorithm proceeds as follows:

A

B

E F

C

D

1 1

2

1

2
3

1

2
3 4

1

2
3 4

5

In practice, Kruskal’s algorithm is implemented in a rather different way to Prim’s algorithm.
The general idea of the most efficient approaches is to start by sorting the edges according to
their weights, and then simply go through that list of edges in order of increasing weight, and
either add them to T , or reject them if they would produce a circle. There are implementations
of that which can be achieved with overall time complexity O(elog2 e), which is dominated by
the O(elog2 e) complexity of sorting the e edges in the first place.

This means that the choice between Prim’s algorithm and Kruskal’s algorithm depends on
the connectivity of the particular graph under consideration. If the graph is sparse, i.e. the

116

Preview from Notesale.co.uk

Page 117 of 126

number of edges is not much more than the number of vertices, then Kruskal’s algorithm will
have the same O(nlog2 n) complexity as the optimal priority queue based versions of Prim’s
algorithm, but will be faster than the standard O(n2) Prim’s algorithm. However, if the graph
is highly connected, i.e. the number of edges is near the square of the number of vertices, it
will have complexity O(n2log2 n) and be slower than the optimal O(n2) versions of Prim’s
algorithm.

11.9 Travelling Salesmen and Vehicle Routing

Note that all the graph algorithms we have considered so far have had polynomial time com-
plexity . There are further graph based problems that are even more complex.

Probably the most well known of these is the Travelling Salesman Problem, which involves
finding the shortest path through a graph which visits each node precisely once. There are
currently no known polynomial time algorithms for solving this. Since only algorithms with
exponential complexity are known, this makes the Travelling Salesman Problem difficult even
for moderately sized n (e.g., all capital cities). Exercise: write an algorithm in pseudocode
that solves the Travelling Salesman Problem, and determine its time complexity.

A variation of the shortest path problem with enormous practical importance in trans-
portation is the Vehicle Routing Problem. This involves finding a series of routes to service
a number of customers with a fleet of vehicles with minimal cost, where that cost may be
the number of vehicles required, the total distance covered, or the total driver time required.
Often, for practical instances, there are conflicts between the various objectives, and there is a
trade-off between the various costs which have to be balanced. In such cases, a multi-objective
optimization approach is required which returns a Pareto front of non-dominated solutions,
i.e. a set solutions for which there are no other solutions which are better on all objectives.
Also, in practice, there are usually various constraints involved, such as fixed delivery time-
windows, or limited capacity vehicles, that must be satisfied, and that makes finding good
solutions even more difficult.

Since exact solutions to these problems are currently impossible for all but the smallest
cases, heuristic approaches are usually employed, such as evolutionary computation, which
deliver solutions that are probably good but cannot be proved to be optimal. One popular
approach is to maintain a whole population of solutions, and use simulated evolution by
natural selection to iteratively improve the quality of those solutions. That has the additional
advantage of being able to generate a whole Pareto front of solutions rather than just a single
solution. This is currently still a very active research area.

117

Preview from Notesale.co.uk

Page 118 of 126

Appendix A

Some Useful Formulae

The symbols a, b, c, r and s represent real numbers, m and n are positive integers, and indices
i and j are non-negative integers.

A.1 Binomial formulae

(a+ b)2 = a2 + 2ab+ b2 (a+ b)(a− b) = a2 − b2
(a+ b)3 = a3 + 3a2b+ 3ab2 + b3 (a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4

A.2 Powers and roots

a0 = 1 a1 = a

a−r = 1/(ar) a1/n = n
√
a

aras = ar+s ar/as = ar−s

asbs = (ab)s as/bs = (a/b)s

(ar)s = ars = asr = (as)r

and the following are special cases of the above:

n
√
a n
√
b = n
√
ab am/n = n

√
am = n

√
a
m

n
√
a/ n
√
b = n

√
a/b a−(m/n) = 1/(n

√
am) = 1/(n

√
a)m

A.3 Logarithms

Definition: The logarithm of c to base a, written as loga c, is the real number b satisfying the
equation c = ab, in which we assume that c > 0 and a > 1.

There are two special cases worth noting, namely loga 1 = 0, since a0 = 1, and loga a = 1,
since a1 = a. From the definition, we immediately see that:

aloga c = c and loga a
b = b

and we can move easily from one base a to another a′ using:

loga′ b = loga′ a ∗ loga b.

119

Preview from Notesale.co.uk

Page 120 of 126

Using the above formula, the time complexity k is computed as follows:

k =
n−1∑
i=0

i∑
j=0

3 =
n−1∑
i=0

(i+ 1)3 = 3
n−1∑
i=0

(i+ 1) = 3
n∑
i=1

i = 3
n(n+ 1)

2
.

Two more sums that often prove useful when computing complexities are:

∞∑
i=0

1

2i
= 1 +

1

2
+

1

4
+

1

8
+

1

16
+ . . . = 2

∞∑
i=0

i

2i
= 0 +

1

2
+

2

4
+

3

8
+

4

16
+ . . . = 2

because they can be truncated at large n to give:

n∑
i=0

1

2i
= 1 +

1

2
+

1

4
+

1

8
+ . . .+

1

2n
' 2 = O(1)

n∑
i=0

i

2i
= 0 +

1

2
+

2

4
+

3

8
+ . . .+

n

2n
' 2 = O(1)

which are needed for computing the complexity of heap tree creation and certain special cases
of quicksort.

A.5 Fibonacci numbers

The sequence of Fibonacci numbers Fn is defined recursively by

Fn = Fn−1 + Fn−2

with the base values F0 = 0, F1 = 1. Thus the sequence begins 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,
55, 89, 144, 233, 377, ...

121

Preview from Notesale.co.uk

Page 122 of 126

