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1.6. TRIGONOMETRIC INTEGRALS AND TRIG. SUBSTITUTIONS 28

The integral of sec x is a little tricky:∫
sec x dx =

∫
sec x (tan x + sec x)

sec x + tan x
dx =

∫
sec x tan x + sec2 x

sec x + tan x
dx =∫

du

u
= ln |u|+ C = ln | sec x + tan x|+ C ,

where u = sec x + tan x, du = (sec x tan x + sec2 x) dx.

Analogously:∫
csc x dx = − ln | csc x + cot x|+ C .

More generally an integral of the form∫
tanm x secn x dx

can be computed in the following way:

(1) If m is odd, use u = sec x, du = sec x tan x dx.
(2) If n is even, use u = tan x, du = sec2 x dx.

Example:

∫
tan3 x sec2 x dx = · · ·

Since in this case m is odd and n is even it does not matter which
method we use, so let’s use the first one:

(u = sec x, du = sec x tan x dx)

· · · =
∫

tan2 x︸ ︷︷ ︸
u2−1

sec x︸ ︷︷ ︸
u

tan x sec x dx︸ ︷︷ ︸
du

=

∫
(u2 − 1)u du

=

∫
(u3 − u) du

=
u4

4
− u2

2
+ C

= 1
4
sec4 x− 1

2
sec2 x + C .

Next let’s solve the same problem using the second method:
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1.7. PARTIAL FRACTIONS 38

Example:∫ √
x2 − 4x + 5 dx =

∫ √
(x− 2)2 + 1 dx

=

∫ √
u2 + 1 du (u = x− 2)

=

∫ √
tan2 t + 1 · sec2 t dt (u = tan t)

=

∫
sec3 t dt

=
sec t tan t

2
+

1

2
ln | sec t + tan t|+ C

=
u
√

u2 + 1

2
+

1

2
ln |u +

√
u2 + 1|+ C

=
(x− 2)

√
x2 − 4x + 5

2

+
1

2
ln

∣∣∣(x− 2) +
√

x2 − 4x + 5
∣∣∣ + C .
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1.9. NUMERICAL INTEGRATION 41

1.9. Numerical Integration

Sometimes the integral of a function cannot be expressed with el-
ementary functions, i.e., polynomial, trigonometric, exponential, loga-
rithmic, or a suitable combination of these. However, in those cases we
still can find an approximate value for the integral of a function on an
interval.

1.9.1. Trapezoidal Approximation. A first attempt to approx-

imate the value of an integral
∫ b

a
f(x) dx is to compute its Riemann

sum:

R =
n∑

i=1

f(x∗i ) ∆x .

Where ∆x = xi−xi−1 = (b− a)/n and x∗i is some point in the interval
[xi−1, xi]. If we choose the left endpoints of each interval, we get the
left-endpoint approximation:

Ln =
n∑

i=1

f(xi−1))∆x = (∆x){f(x0) + f(x1) + · · ·+ f(xn−1)} ,

Similarly, by choosing the right endpoints of each interval we get the
right-endpoint approximation:

Rn =
n∑

i=1

f(xi)∆x = (∆x){f(x1) + f(x2) + · · ·+ f(xn)} .

The trapezoidal approximation is the average of Ln and Rn:

Tn =
1

2
(Ln+Rn) =

∆x

2
{f(x0)+2f(x1)+2f(x2)+· · ·+2f(xn−1)+f(xn)} .

Example: Approximate
∫ 1

0
x2 dx with trapezoidal approximation us-

ing 4 intervals.

Solution: We have ∆x = 1/4 = 0.25. The values for xi and f(xi) =
x2

i can be tabulated in the following way:

i xi f(xi)
0 0 0
1 0.25 0.0625
2 0.5 0.25
3 0.75 0.5625
4 1 1
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1.10. IMPROPER INTEGRALS 47

Analogously:
[F (x)]a−∞ = lim

t→−∞
[F (x)]at ,

and

[F (x)]∞−∞ = [F (x)]c−∞ + [F (x)]∞c = lim
t→−∞

[F (x)]ct + lim
t→∞

[F (x)]tc .

Example:∫ ∞

1

1

x2
dx = lim

t→∞

∫ t

1

1

x2
dx = lim

t→∞

[
−1

x

]t

1

= lim
t→∞

(
−1

t
+ 1

)
= 1 ,

or in simplified notation:∫ ∞

1

1

x2
dx =

[
−1

x

]∞
1

= lim
t→∞

(
−1

t
+ 1

)
= 1 .

Example: For what values of p is the following integral convergent?:∫ ∞

1

1

xp
dx .

Answer : If p = 1 then we have∫ t

1

1

x
dx = [ln x]t1 = ln t ,

so ∫ ∞

1

1

x
dx = lim

t→∞

∫ t

1

1

xp
dx = lim

t→∞
ln t = ∞ ,

and the integral is divergent. Now suppose p 6= 1:∫ t

1

1

xp
dx =

[
x−p+1

−p + 1

]t

1

=
1

1− p

{
1

tp−1
− 1

}
If p > 1 then p− 1 > 0 and∫ ∞

1

1

xp
dx = lim

t→∞
1

1− p

{
1

tp−1
− 1

}
= 0 ,

hence the integral is convergent. On the other hand if p < 1 then
p− 1 < 0, 1− p > 0 and∫ ∞

1

1

xp
dx = lim

t→∞
1

1− p

{
t1−p − 1

}
= ∞ ,

hence the integral is divergent. So:∫ ∞

1

1

xp
dx is convergent if p > 1 and divergent if p ≤ 1.

Preview from Notesale.co.uk

Page 47 of 120



2.2. VOLUMES 52

2.2. Volumes

2.2.1. Volumes by Slices. First we study how to find the volume
of some solids by the method of cross sections (or “slices”). The idea
is to divide the solid into slices perpendicular to a given reference line.
The volume of the solid is the sum of the volumes of its slices.

2.2.2. Volume of Cylinders. A cylinder is a solid whose cross
sections are parallel translations of one another. The volume of a cylin-
der is the product of its height and the area of its base:

V = Ah .

2.2.3. Volume by Cross Sections. Let R be a solid lying along-
side some interval [a, b] of the x-axis. For each x in [a, b] we denote A(x)
the area of the cross section of the solid by a plane perpendicular to
the x-axis at x. We divide the interval into n subintervals [xi−1, xi], of
length ∆x = (b− a)/n each. The planes that are perpendicular to the
x-axis at the points x0, x1, x2, . . . , xn divide the solid into n slices. If
the cross section of R changes little along a subinterval [xi−1, xi], the
slab positioned alongside that subinterval can be considered a cylinder
of height ∆x and whose base equals the cross section A(x∗i ) at some
point x∗i in [xi−1, xi]. So the volume of the slice is

∆Vi ≈ A(x∗i ) ∆x .

The total volume of the solid is

V =
n∑

i=1

∆Vi ≈
n∑

i=1

A(x∗i ) ∆x .

Once again we recognize a Riemann sum at the right. In the limit as
n →∞ we get the so called Cavalieri’s principle:

V =

∫ b

a

A(x) dx .

Of course, the formula can be applied to any axis. For instance
if a solid lies alongside some interval [a, b] on the y axis, the formula
becomes

V =

∫ b

a

A(y) dy .

Example: Find the volume of a cone of radius r and height h.
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2.2. VOLUMES 54

If the revolution is performed around the y-axis, then:

V =

∫ b

a

π
[
(xR)2 − (xL)2

]
dy .

Example: Find the volume of the solid obtained by revolving the
area between y = x2 and y =

√
x around the x-axis.

Solution: First we need to find the intersection points of these curves
in order to find the interval of integration:{

y = x2

y =
√

x
⇒ (x, y) = (0, 0) and (x, y) = (1, 1) ,

hence we must integrate from x = 0 to x = 1:

V = π

∫ 1

0

[
(
√

x)2 − (x2)2
]

dx = π

∫ 1

0

(
x− x4

)
dx

= π

[
x2

2
− x5

5

]1

0

= π

(
1

2
− 1

5

)
=

3π

10
.

2.2.5. Volumes by Shells. Next we study how to find the volume
of some solids by the method of shells. Now the idea is to divide the
solid into shells and add up their volumes.

2.2.6. Volume of a Cylindrical Shell. A cylindrical shell is the
region between two concentric circular cylinders of the same height h.
If their radii are r1 and r2 respectively, then the volume is:

V = πr2
2h− πr2

1h = πh(r2
2 − r2

1) = πh

2r︷ ︸︸ ︷
(r2 + r1)

t︷ ︸︸ ︷
(r2 − r1) = 2πrth ,

where r = (r2 + r1)/2 is the average radius, and t = r2 − r1 is the
thickness of the shell.

2.2.7. Volumes by Cylindrical Shells. Consider the solid gen-
erated by revolving around the y-axis the region under the graph of
y = f(x) between x = a and x = b. We divide the interval [a, b] into n
subintervals [xi−1, xi] of length ∆x = (b− a)/n each. The volume V of
the solid is the sum of the volumes ∆Vi of the shells determined by the
partition. Each shell, obtained by revolving the region under y = f(x)
over the subinterval [xi−1, xi], is approximately cylindrical. Its height
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2.2. VOLUMES 56

If the region is revolved around the x-axis then the variables x and
y reverse their roles:

V =

∫ b

a

2πy (xR − xL) dy .

2.2.9. Revolving Around an Arbitrary Line. If the plane re-
gion is revolved around a vertical line y = c, the radius of the shell will
be x − c (or c − x, whichever is positive) instead of x, so the formula
becomes:

V =

∫ b

a

2π(x− c)(f(x)− g(x)) dx =

∫ b

a

2π(x− c)(yT − yB) dx .

Similarly, if the region is revolved around the horizontal line x = c,
the formula becomes:

V =

∫ b

a

2π(y − c)(f(y)− g(y)) dy =

∫ b

a

2π(y − c)(xR − xL) dy ,

where y − c must be replaced by c− y if c > y.
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2.3. ARC LENGTH, PARAMETRIC CURVES 59

Answer : The given points correspond to the values t = 1 and t = 2
of the parameter, so:

L =

∫ 2

1

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ 2

1

√
(2t)2 + (3t2)2 dt

=

∫ 2

1

√
4t2 + 9t4 dt

=

∫ 2

1

t
√

4 + 9t2 dt

=
1

18

∫ 40

13

√
u du (u = 4 + 9t2)

=
1

27

[
403/2 − 133/2

]
=

1

27
(80
√

10− 13
√

13) .

In cases when the arc is given by an equation of the form y = f(x)
or x = f(x) the formula becomes:

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx

or

L =

∫ b

a

√(
dx

dy

)2

+ 1 dy

Example: Find the length of the arc defined by the curve y = x3/2

between the points (0, 0) and (1, 1).
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2.4. AVERAGE VALUE OF A FUNCTION (MEAN VALUE THEOREM) 61

2.4. Average Value of a Function (Mean Value Theorem)

2.4.1. Average Value of a Function. The average value of finitely
many numbers y1, y2, . . . , yn is defined as

yave =
y1 + y2 + · · ·+ yn

n
.

The average value has the property that if each of the numbers y1, y2, . . . , yn

is replaced by yave, their sum remains the same:

y1 + y2 + · · ·+ yn =

(n times)︷ ︸︸ ︷
yave + yave + · · ·+ yave

Analogously, the average value of a function y = f(x) in the interval
[a, b] can be defined as the value of a constant fave whose integral over
[a, b] equals the integral of f(x):∫ b

a

f(x) dx =

∫ b

a

fave dx = (b− a) fave .

Hence:

fave =
1

b− a

∫ b

a

f(x) dx .

2.4.2. The Mean Value Theorem for Integrals. If f is con-
tinuous on [a, b], then there exists a number c in [a, b] such that

f(c) = fave =
1

b− a

∫ b

a

f(x) dx ,

i.e., ∫ b

a

f(x) dx = f(c)(b− a) .

Example: Assume that in a certain city the temperature (in ◦F) t
hours after 9 A.M. is represented by the function

T (t) = 50 + 14 sin
πt

12
.

Find the average temperature in that city during the period from
9 A.M. to 9 P.M.
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2.4. AVERAGE VALUE OF A FUNCTION (MEAN VALUE THEOREM) 62

Answer :

Tave =
1

12− 0

∫ 12

0

(
50 + 14 sin

πt

12

)
dt

=
1

12

[
50t− 14 · 12

π
cos

πt

12

]12

0

=
1

12

{(
50 · 12− 168

π
cos

12π

12

)
−

(
50 · 0− 168

π
cos 0

)}
= 50 +

28

π
≈ 58.9 .
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2.6. PROBABILITY 70

hand f(x) = 0 for x outside [2, 5], hence:

1 =

∫ ∞

−∞
f(x) dx =

∫ 5

2

c dx = c(5− 2) = 3c ,

so c = 1/3. Hence

f(x) =

{
1/3 if 2 ≤ x ≤ 5,

0 otherwise.

2.6.2. Means. The mean or average of a discrete random variable
that takes values x1, x2, . . . , xn with probabilities p1, p2, . . . , pn respec-
tively is

x = x1p1 + x2p2 + · · ·+ xnpn =
n∑

i=1

xipi .

For instance the mean value of the points obtained by rolling a dice is

1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
=

7

2
= 3.5 .

This means that if we roll the dice many times in average we may
expect to get about 3.5 points per roll.

For continuous random variables the probability is replaced with
the probability density function, and the sum becomes an integral:

µ = x =

∫ ∞

−∞
xf(x) dx .

2.6.3. Waiting Times. The time that we must wait for some
event to occur (such as receiving a telephone call) can be modeled with
a random variable of density

f(t) =

{
0 if t < 0,

ce−ct if t ≥ 0,

were c is a positive constant. Note that, as expected:∫ ∞

−∞
f(t) dt =

∫ ∞

0

ce−ct dx =
[−e−ct

]∞
0

= lim
u→∞

{−e−cu − (−e0)} = 1 .
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2.6. PROBABILITY 73

P (70 ≤ X ≤ 130) =

∫ 130

70

1

15
√

2π
e−(x−100)2/450 dx

=
1√
π

∫ √
2

−√2

e−u2

du [u = (x− 100)/15
√

2]

=
2√
π

∫ √
2

0

e−u2

du (by symmetry)

= φ(
√

2) ≈ φ(1.4) ≈ 0.952
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3.1. DIFFERENTIAL EQUATIONS AND SEPARABLE EQUATIONS 76

3.1.5. Separable Differential Equations. A differential equa-
tion is said to be separable if it can be written in the form

f(y) dy = g(x) dx ,

so that the left hand side depends on y only and the right hand side
depends on x only. In particular this is true if the equation is of the
form

dy

dx
= g(x) φ(y) ,

where the right hand side is a product of a function of x and a function
of y. In this case we get:

1

φ(y)
dy = g(x) dx .

Given the equation

f(y) dy = g(x) dx ,

we can solve it by integrating both sides. Since the antiderivatives of
a function differ in a constant, we get:∫

f(y) dy =

∫
g(x) dx + C ,

If F (y) =
∫

f(y) dy and G(x) =
∫

g(x) dx then the solution takes the
form

F (y) = G(x) + C .

Next we will try to solve this equation algebraically in order to either
write y as a function of x, or x as a function of y.

Example: Consider the equation

dy

dx
= y2 x .

The right hand side is the product of a function of x and a function of
y, so it is separable:

1

y2
dy = x dx .

Integrating both sides we get:

−1

y
=

x2

2
+ C ,

hence

y = − 2

x2 + 2C
= − 2

x2 + C ′ ,

where C ′ is a new constant equal to 2C.
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3.1. DIFFERENTIAL EQUATIONS AND SEPARABLE EQUATIONS 77

3.1.6. Initial Value Problems. A differential equation together
with an initial condition 

dy

dx
= F (x, y)

y(x0) = y0

is called an initial value problem.

The initial condition can be used to determine the value of the
constant in the solution of the equation.

Example: Solve the following initial value problem:
dy

dx
= y2 x

y(0) = 1

Solution: We already found the general solution to the differential
equation:

y = − 2

x2 + C
.

Next we let x = 0 and y = 1, and solve for C:

1 = − 2

C
=⇒ C = −2 .

So the solution is

y = − 2

x2 − 2
=

2

2− x2
.
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4.1. SEQUENCES 85

4.1.3. Operations with Limits. If an → a and bn → b then:

(an + bn) → a + b.

(an − bn) → a− b.

can → ca for any constant c.

anbn → ab.

an

bn

→ a

b
if b 6= 0.

(an)p → ap if p > 0 and an > 0 for every n.

Example: Find lim
n→∞

n2 + n + 1

2n2 + 3
.

Answer : We divide by n2 on top and bottom and operate with limits
inside the expression:

lim
n→∞

n2 + n + 1

2n2 + 3
= lim

n→∞
1 + 1

n
+ 1

n2

2 + 3
n2

=
1 + 0 + 0

2 + 0
=

1

2
.

4.1.4. Squeeze Theorem. If an ≤ bn ≤ cn for every n ≥ n0 and
lim

n→∞
an = lim

n→∞
cn = L, then lim

n→∞
bn = L.

Consequence: If lim
n→∞

|an| = 0 then lim
n→∞

an = 0.

Example: Find lim
n→∞

cos n

n
.

Answer : We have −1

n
≤ cos n

n
≤ 1

n
, and

1

n
→ 0 as n → ∞, hence

by the squeeze theorem

lim
n→∞

cos n

n
= 0 .

4.1.5. Other definitions.

4.1.5.1. Increasing, Decreasing, Monotonic. A sequence is increas-
ing if an+1 > an for every n. It is decreasing if an+1 < an for every n.
It is called monotonic if it is either increasing or decreasing.

Example: Probe that the sequence an =
n + 1

n
is decreasing.
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4.1. SEQUENCES 87

Now we prove that an is increasing:

(an+1)
2 = 2 + an > an + an = 2an > an · an = (an)2 ,

hence an+1 > an.

Finally, since the given sequence is bounded and increasing, by the
monotonic sequence theorem it has a limit L. We can find it by taking
limits in the recursive relation:

an+1 =
√

2 + an .

Since an → L and an+1 → L we have:

L =
√

2 + L ⇒ L2 = 2 + L ⇒ L2 − L− 2 = 0 .

That equation has two solutions, −1 and 2, but since the sequence is
positive the limit cannot be negative, hence L = 2.

Note that the trick works only when we know for sure that the limit
exists. For instance if we try to use the same trick with the Fibonacci
sequence 1, 1, 2, 3, 5, 8, 13, . . . (f1 = 1, f2 = 1, fn = fn−1 + fn−2),
calling L the “limit” we get from the recursive relation that L = L+L,
hence L = 0, so we “deduce” limn→∞ fn = 0. But this is wrong, in fact
the Fibonacci sequence is divergent.
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4.2. SERIES 91

Example: Show that
∞∑

n=1

sin n diverges.

Answer : All we need to show is that sin n does not tend to 0. If for
some value of n, sin n ≈ 0, then n ≈ kπ for some integer k, but then

sin (n + 1) = sin n cos 1 + cos n sin 1

≈ sin kπ cos 1 + cos kπ sin 1

= 0± sin 1

= ±0.84 · · · 6= 0

So if a term sin n is close to zero, the next term sin (n + 1) will be far
from zero, so it is impossible for sin n to get permanently closer and
closer to 0.

4.2.6. Operations with Series. If
∑∞

n=1 an and
∑∞

n=1 bn are con-
vergent series and c is a constant then the following series are also
convergent and:

(1)
∞∑

n=1

can = c
∞∑

n=1

an

(2)
∞∑

n=1

(an + bn) =
∞∑

n=1

an +
∞∑

n=1

bn

(3)
∞∑

n=1

(an − bn) =
∞∑

n=1

an −
∞∑

n=1

bn
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4.7. TAYLOR AND MACLAURIN SERIES 105

From here we get a system of n+1 equations with the following solution:

c0 = f(a)

c1 = f ′(a)

c2 =
f ′′(a)

2!
. . .

cn =
f (n)(a)

n!

hence:

Tn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

=
n∑

k=0

f (k)(a)

k!
(x− a)k .

That polynomial is the so called nth-degree Taylor polynomial of
f(x) at x = a.

Example: The third-degree Taylor polynomial of f(x) = sin x at
x = a is

T3(x) = sin a + cos a · (x− a)2 − sin a

2
(x− a)2 − cos a

3!
(x− a)3 .

For a = 0 we have sin 0 = 0 and cos 0 = 1, hence:

T3(x) = x− x3

6
.

So in particular

sin 0.1 ≈ 0.1− 0.13

6
= 0.09983333 . . . .

The actual value of sin 0.1 is

sin 0.1 = 0.099833416 ,

which agrees with the value obtained from the Taylor polynomial up
to the sixth decimal place.

4.7.2. Taylor’s Inequality. The difference between the value of
a function and its Taylor approximation is called remainder :

Rn(x) = f(x)− Tn(x) .
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4.8. APPLICATIONS OF TAYLOR POLYNOMIALS 112

y′′ − 2xy′ + y =
∞∑

n=0

cnx
n − x

∞∑
n=1

ncnx
n−1 +

∞∑
n=2

n(n− 1)cnx
n−2

=
∞∑

n=0

cnx
n −

∞∑
n=1

ncnx
n +

∞∑
n=2

n(n− 1)cnx
n−2

After some reindexing and grouping we get that the equation becomes:
∞∑

n=0

{(n + 2)(n + 1)cn+2 − (2n− 1)cn}xn = 0 ,

which implies:

cn+2 =
2n− 1

(n + 1)(n + 2)
cn .

The first two coefficients c0 and c1 are arbitrary, and the rest can be
computed using that relation:

c2 =
−1

2
c0

c3 =
1

2 · 3c0

c4 =
3

3 · 4c2 = − 3

4!
c0

c5 =
5

4 · 5c3 =
5

5!
c0

· · ·
In general the even and odd coefficients are:

c2n =
(−1) · 3 · 7 · 11 · · · · · (4n− 5)

(2n)!
c0

c2n+1 =
1 · 5 · 9 · · · · · (4n− 3)

(2n + 1)!
c1 ,

and the solution is

y = c0

{
1 +

∞∑
n=1

(−1) · 3 · 7 · 11 · · · · · (4n− 5)

(2n)!
x2n

}

+ c1

{
x +

∞∑
n=1

1 · 5 · 9 · · · · · (4n− 3)

(2n + 1)!
x2n+1

}
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