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The integral of secx is a little tricky:

sec z (tan x + sec x) sec x tan z + sec?
secrdr = dr = dr =
secx + tanx secx + tanx

d
/—u:1n|u|—|—C’: In|secz + tanz| + C'|,
u

where u = secx + tanz, du = (sec z tan z + sec® x) dx.

Analogously:

/cscxd:c: —In|cscx + cot x| + C|.

More generally an integral of the form

tan™ x sec” x dx
/ \e-
can be computed in the follovleé@teSa

&Zd:c.

is —secx
q)‘ \Ni/ﬂ useu—t g Qec 2xdx.
Example: /gl xscgcxdx—

Since in this case m is odd and n is even it does not matter which
method we use, so let’s use the first one:

(u =secx, du = secx tanx dx)

-:/tan2x sec tanxsecxdx:/(uz—l)udu
SN N N ——
:/(u3—u)du

u2—1 U du

4 2
U U

=———+C
4 2

= }Isec4x—%5602x+0.

Next let’s solve the same problem using the second method:
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Example:

/\/332—4x+5dx:/\/(x—2)2+1dx
:/VU2+1du (u=2—-2)
:/\/tan2t+1-se02tdt (u = tant)

= /sec3 tdt

secttant 1
= 5 +§ln|sect+tant|+0

Vur+1 1
_ u2+ +§1n]u+\/u2+1]+0

(x—2)Va2 -4z +5
_ : O-U\(

+ 1ln‘ (x —2) é

NO

i€ W “0‘238 of 320
P pa9d
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1.9. Numerical Integration

Sometimes the integral of a function cannot be expressed with el-
ementary functions, i.e., polynomial, trigonometric, exponential, loga-
rithmic, or a suitable combination of these. However, in those cases we
still can find an approximate value for the integral of a function on an
interval.

1.9.1. Trapezoidal Approximation. A first attempt to approx-
imate the value of an integral fab f(z)dx is to compute its Riemann
sum:

R= Zn:f(x;") Azx.
i=1

Where Az = z; —x;_1 = (b—a)/n and z is some point in the interv“
[;_1,2;]. If we choose the left endpoints of each intervabv@gg\hw
left-endpoint approximation: a\e .

L, = i f(xi1))Az = (A (@‘%xsl) ?@ f(xn1)},

=1
Similarly, b o&&ge right emﬁl—)o@s&f %}h interval we get the
P (Z@ﬂi&@ DPTOTIMALIEeN: A

Ry, = Z?(x%w = (Ax){f (1) + f(x2) + -+ flzn)}-

The trapezoidal approrimation is the average of L, and R,:

1

T, = 5(LutRa) = %{f<xo)+2f<:v1)+2f<xz)+' CH2f (@) ()}

FExample: Approximate fol 2? dz with trapezoidal approximation us-
ing 4 intervals.

Solution: We have Ax = 1/4 = 0.25. The values for x; and f(z;) =
2

x; can be tabulated in the following way:
00 0
110.250.0625
2105 |0.25
310.75 | 0.5625
411 1
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Analogously:
P = lim [Fa)] |
and
F@)]%, = [F@) o+ [F@)]T = lim [F@]; + lim [F@)
Example:

> q t1 11 1
/ — dxr = lim — dz = lim l——} = lim (——+1>:1,
1 x t—oo |1 X t—o00 €T t—o00 t

or in simplified notation:
<1 17 1
/ jdx:{——} = lim (———i—l)zl.
1 x], t—o0 t

FExample: For what values of p is the following integral corﬁrg@\(

eo%\’ |
P /Pl 1

dr = lim —dr = limInt = o0,
t—o0 1 T t—o0

and the integral is divergent. Now suppose p # 1:

L A 1 1
L [—p+1L 1—19{751"1 }

Ifp>1thenp—1>0and

>~ 1 1 1
/ “dr=Tlm—J— —1%=0,
1 P t—>ool—p tp—l

hence the integral is convergent. On the other hand if p < 1 then
p—1<0,1—p>0and

/1 —dx*hml—{tlp—l} 0,

xP t—o0

hence the integral is divergent. So:

o

1

/ — dz is convergent if p > 1 and divergent if p < 1.
P
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2.2. Volumes

2.2.1. Volumes by Slices. First we study how to find the volume
of some solids by the method of cross sections (or “slices”). The idea
is to divide the solid into slices perpendicular to a given reference line.
The volume of the solid is the sum of the volumes of its slices.

2.2.2. Volume of Cylinders. A cylinder is a solid whose cross
sections are parallel translations of one another. The volume of a cylin-
der is the product of its height and the area of its base:

V = Ah.

side some interval [a, b] of the z-axis. For each x in [a, b] we denote
the area of the cross section of the solid by a plane per @ul
the z-axis at a: We divide the interval into n S mz 1, %], O

length Az = (b —a)/n each. The ex;r? erpendlcular to the
r-axis at the pomts Zo, L1, ﬁél the mto n slices. If
the cross section @ﬁ(‘ ittle alon ﬁ_ [;_1,x;], the
slab pogitio kii that % € con81dered a cylinder
éﬁk‘ ald Whose the cross section A(z}) at some

P (:) in xl,@ a olume of the slice is

AV, =~ A(z}) Ax.

The total volume of the solid is

V= 2”: AV; ~ En:A(x
i=1 i=1

Once again we recognize a Riemann sum at the right. In the limit as
n — oo we get the so called Cavalieri’s principle:

VZKU@mm

2.2.3. Volume by Cross Sections. Let R be a solid lying aloni(—

Of course, the formula can be applied to any axis. For instance
if a solid lies alongside some interval [a,b] on the y axis, the formula
becomes

vle@my

Example: Find the volume of a cone of radius r and height h.



2.2. VOLUMES 54

If the revolution is performed around the y-axis, then:
b
V_/ T [(mR)2 — (xL)z} dy .

FExample: Find the volume of the solid obtained by revolving the
area between y = x? and y = \/x around the z-axis.

Solution: First we need to find the intersection points of these curves
in order to find the interval of integration:

y = a’
= (z,9)=(0,0) and (z,y)=(1,1),
y =V
hence we must integrate from x =0 to x = 1:
1

vzw/ol[(\/;f—(x?)ﬂ dxzw/ - 60 \)\4

2 e-
[———} @w g\

2. 2,5 by Shell&l\ﬁt @étudy Tow to find the volume

Now the idea is to divide the

g;de by the
P € nto shells r@ heir volumes.

2.2.6. Volume of a Cylindrical Shell. A cylindrical shell is the
region between two concentric circular cylinders of the same height h.
If their radii are r; and ry respectively, then the volume is:

o7
/—M/—/t%
V = nrih — mr?h = wh(ry — r}) = wh(ro + 1) (ry — 1) = 277th,

where 7 = (rg + r1)/2 is the average radius, and t = ry — 1y is the
thickness of the shell.

2.2.7. Volumes by Cylindrical Shells. Consider the solid gen-
erated by revolving around the y-axis the region under the graph of
y = f(x) between x = a and x = b. We divide the interval [a, b] into n
subintervals [x;_1, z;| of length Az = (b— a)/n each. The volume V' of
the solid is the sum of the volumes AV; of the shells determined by the
partition. Each shell, obtained by revolving the region under y = f(z)
over the subinterval [z;_1,x;], is approximately cylindrical. Its height
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If the region is revolved around the z-axis then the variables z and
y reverse their roles:

b
V:/ 2y (xp —xp) dy .

2.2.9. Revolving Around an Arbitrary Line. If the plane re-
gion is revolved around a vertical line y = ¢, the radius of the shell will
be x — ¢ (or ¢ — x, whichever is positive) instead of x, so the formula
becomes:

b b
V= [ 2nla = of(@) - gla)) da = [ 2m(e— O)yr ~ ym)do.

Similarly, if the region is revolved around the horizontal line z = ¢,

the formula becomes: \(
b

V= /ab 2m(y — c)(f(y) — 9(y)) dy = / 27 (y — c)éR c@dyu
where y — ¢ must be replaced by ¢ — éteﬁa\ .



2.3. ARC LENGTH, PARAMETRIC CURVES 59

Answer: The given points correspond to the valuest =1 and t = 2
of the parameter, so:

() (3)

/\/ (2t)2 + (3t2)2 dt

:/ VA2 + 9t dt
1

2
—/ tv4 49t dt

preye

In cases whe

% Vudu (u =4+ 9t%) u\(
1 O

403/ 2 —13%° e-
o S‘%ﬁﬁesa\
W RO

th 98 given by an equation of the form y = f(x)

or z = f(x) the formula becomes:

or

b 2
L:/ (@> +1dy
o\ \dy

Ezample: Find the length of the arc defined by the curve y = 2%/2
between the points (0,0) and (1,1).
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2.4. Average Value of a Function (Mean Value Theorem)

2.4.1. Average Value of a Function. The average value of finitely
many numbers vy, s, ..., ¥y, is defined as

Yi+Y+ -+ Yn
- )

ave

The average value has the property that if each of the numbers y1, ¥, ..., yn
is replaced by ¥ave, their sum remains the same:

(n times)
N

yl+y2+"'+yn:g,/ave+yave+"'+yav;

Analogously, the average value of a function y = f(x) in the interval
[a,b] can be defined as the value of a constant f,,. whose integral o K
[a, b] equals the integral of f(z):

cO

2.4.2. The Mean Value Theorem for Integrals. If f is con-
tinuous on [a, b], then there exists a number ¢ in [a, b] such that

b
F0) = fuw = 5= [ f(a)ds

/f F)b—a).

Ezample: Assume that in a certain city the temperature (in °F) ¢
hours after 9 A.M. is represented by the function

i.e.,

mt
T(t) =50+ 14sin — .
(1) + sin 5

Find the average temperature in that city during the period from
9 A.M. to 9 P.M.
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Answer:

1 12 7t
Tive = —— 14sin — | dt
12_0/0 (50+ sin 12)

1 14-12 #t]*
= — COS —
12 T 12],

1 168 127 168

2
=50—|——8%58.9.
s

{501& —
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hand f(x) = 0 for x outside [2, 5], hence:

00 5
1= f(x)dx:/ cdr = c(b—2) = 3c,
—00 2

so ¢ = 1/3. Hence

0 otherwise.

f(x):{1/3 if 2 <z <5,

2.6.2. Means. The mean or average of a discrete random variable
that takes values x1, xo, ..., z, with probabilities p1, po, ..., p, respec-
tively is

T=a1p1+ Tapa + -+ Tppn = szp@- CO \)\(

For instance the mean value of th ; \Dy rolling a dice is

) x@w +5 6&2—_@: 3.5.
\lf\" 20003

€$’1 at 1f eldi®€ many times in average we may

to get a nts per roll.

For continuous random variables the probability is replaced with
the probability density function, and the sum becomes an integral:

u-f-/_ixf(m)dm

2.6.3. Waiting Times. The time that we must wait for some
event to occur (such as receiving a telephone call) can be modeled with
a random variable of density

f(t):{o ) if 1 <0,

ce™ ift >0,

were ¢ is a positive constant. Note that, as expected:

/Z f(t)dt = /OOO ce™ dr = [—e~] = lim {—e~" — (=e%)} = 1.

U—00
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130 1

P(70 < X <130) = / —(2—100)2/450 7.

70 15\/§e
1 V2 o
= N /_ﬁe du [u = (x — 100)/15v/2]

9 [v2 o,
- = e du (by symmetry)
7

= o(V2) = ¢(1.4) ~[0.952]
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3.1.5. Separable Differential Equations. A differential equa-
tion is said to be separable if it can be written in the form

fy)dy = g(x) da,
so that the left hand side depends on y only and the right hand side

depends on x only. In particular this is true if the equation is of the
form

& = () 60)

where the right hand side is a product of a function of x and a function
of y. In this case we get:

Given the equation
fy)dy = g(x)dz, O U\(

we can solve it by integrating both sides. Si g@&\ ti ivatives of

a function differ in a constant, ﬁe

@l Y@XN} dy and then the solution takes the
Py pa@ Hec.

Next we will try to solve this equatlon algebraically in order to either
write y as a function of x, or x as a function of y.

FExample: Consider the equation
dy
dx

The right hand side is the product of a function of  and a function of
Yy, so it is separable:

=y

1
—dy=uzdx.
Y

Integrating both sides we get:

hence

N B IO
where C’ is a new constant equal to 2C.
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3.1.6. Initial Value Problems. A differential equation together
with an initial condition

dy

2 _F

I (z,y)
y(zo) = yo

is called an initial value problem.

The initial condition can be used to determine the value of the
constant in the solution of the equation.

Example: Solve the following initial value problem:
dy
&V

y(0) =1

Solution: We already found the general solution to t r‘e\AXQ

equation: e
esd\
Next we let x =0 n@g 0
g\'\ { 674 ot l’l
P @ hé solution P a_g 5

29 9_g2°
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4.1.3. Operations with Limits. If a¢,, — a and b,, — b then:
(an +by) — a+b.
(an — by) — a —b.
ca, — ca for any constant c.

anb, — ab.

Z_:H%ifb%o.

(a,)? — a” if p> 0 and a, > 0 for every n.
2
1
Example: Find lim mantl
n—oo 2n?+3

Answer: We divide by n? on top and bottom and opera&xﬁl 1&\(

inside the expression:

. n*+n+1 6@'
lim 1 im
n—oo 2n2 —|— 3 ol
g‘@leze Theo %[ g < ¢, for every n > ng and
P‘@ 1N Cgpny élm

n—oo n—oo

Consequence If llm |an| = 0 then hm a, = 0.

cosn

Ezample: Find lim

n—oo N

1 cosn
Answer: We have —— <

by the squeeze theorem

1
< —,and — — 0 as n — o0, hence
n n n

3

4.1.5. Other definitions.

4.1.5.1. Increasing, Decreasing, Monotonic. A sequence is increas-
ing if a1 > a, for every n. It is decreasing if a,.1 < a, for every n.
It is called monotonic if it is either increasing or decreasing.
n+1
n

Ezxample: Probe that the sequence a,, = is decreasing.
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Now we prove that a, is increasing;:
(ans1)? =2+ ap > ap + ap = 2a, > ay, - a, = (a,)?,
hence a, 1 > a,.
Finally, since the given sequence is bounded and increasing, by the

monotonic sequence theorem it has a limit L. We can find it by taking
limits in the recursive relation:

an+1:\/2+an-
Since a,, — L and a,, 1 — L we have:
=V2+L = [*=24+L =L[*-L-2=0.

That equation has two solutions, —1 and 2, but since the sequence is
positive the limit cannot be negative, hence L = 2.

Note that the trick works only when we know for sure that the
exists. For instance if we try to use the same trick with c1
sequence 1,1,2,3,5,8,13,... (fi = 1, f2 $51+fn 2)
calling L the “limit” we get from t e ion that L=1L+ L

hence L = 0, so we “deduce’, n& . Bu s wrong, in fact
the Fibonacci seqfv@“&rgent ﬁ@
ew
P eN\ P a@e
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Example: Show that Z sinn diverges.

n=1
Answer: All we need to show is that sinn does not tend to 0. If for
some value of n, sinn = 0, then n =~ k7 for some integer k, but then
sin (n+ 1) =sinncos 1+ cosnsin 1

~ sin km cos 1 + cos kmsin 1

=0=+sinl

=4084---#0
So if a term sinn is close to zero, the next term sin (n 4 1) will be far

from zero, so it is impossible for sinn to get permanently closer and
closer to 0.

4.2.6. Operations with Series. If Y ° a,and )~ ﬂ&(
vergent series and c is a constant then the follox\é @

convergent and: te 5
. e 0
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From here we get a system of n+1 equations with the following solution:

co = f(a)
c1 = f'(a)
. f//(a)
DY
f™(a)
n = n!

|
k=0 k! O UK
That polynomial is the so called %ea)/% polynomial of

f(x) at x = a.

Erample: Theﬁlvv@m Tayl % &om&z — sinz at

.T—CLISe
P(€N3s1‘9+3@@ P 0 - T -0

3!
For a = 0 we have sin0 = 0 and cos(0 = 17 hence:

So in particular

. 0.13
sin0.1 = 0.1 — o - 0.09983333... .

The actual value of sin0.1 is
sin 0.1 = 0.099833416 ,

which agrees with the value obtained from the Taylor polynomial up
to the sixth decimal place.

4.7.2. Taylor’s Inequality. The difference between the value of
a function and its Taylor approximation is called remainder:

Ry (v) = f(z) = T,(z) .
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y' =22y +y= Z cpx” — Z ne,z"t + Zn(n —1)e,a™?
n=0 n=1

= n=2

o oo oo
= g cpx’ — 5 ne,x” + g n(n — 1)c "2
n=0 n=1 n=2

After some reindexing and grouping we get that the equation becomes:

[ee]
> {(n+2)(n+1)cass — (20— Deyta” =0,
n=0
which implies:
2n —1
n+1)(n+2
The first two coefficients ¢y and ¢; are arbitrary, and the rest can be
computed using that relation:

—— uk

2

Cpni2 = ( )Cn.

C3 = 213000"658'\6 ’

In general the even and odd coefficients are:

(=1)-3-7-11----- (4n — 5)

Cn = (2n)! €0
1:5:9wn.. (4n—3)

Con = 3

2n+1 @n+1)! 1

and the solution is




