
Page 4 of 32

(ii)

Ans:

Explain decision table with suitable example.

A decision table is a good way to deal with combinations of things (e.g. inputs). This

technique is sometimes also referred to as a cause-effect‘ table. The first task is to identify a

suitable function or subsystem which reacts according to a combination of inputs or events.

The system should not contain too many inputs otherwise the number of combinations will

become unmanageable. It is better to deal with large numbers of conditions by dividing them

into subsets and dealing with the subsets one at a time. Once you have identified the aspects

that need to be combined, then you put them into a table listing all the combinations of True

and False for each of the aspects.

Following decision table shows the sample example of a credit card black box testing

Conditio Rule1 Rule2 Rule 3 Rule 4

n

Pin Number T T T F

Payment Detail T F F T

Overdue details F T T F

OR

i). Decision table testing is black box test design technique to determine the test scenarios

for complex business logic.

ii). Decision tables provide a systematic way of stating complex business rules, which is

useful for developers as well as for testers.

iii). Decision tables can be used in test design whether or not they are used in specifications,

as they help testers explore the effects of combinations of different inputs and other

software states that must correctly implement business rules.

iv). It helps the developers to do a better job can also lead to better relationships with them.

v). Testing combinations can be a challenge, as the number of combinations can often be

huge.

vi). Testing all combinations may be impractical if not impossible.

vii). We have to be satisfied with testing just a small subset of combinations but making the

choice of which combinations to test and which to leave out is also important.

viii). If you do not have a systematic way of selecting combinations, an arbitrary subset will be

used and this may well result in an ineffective test effort.

Example of decision table :

In each column of two conditions mention ―Yes‖ or ―No‖, user will get here four combinations

(two to the power of the number of things to be combined). Because of this, it‘s always good to

take small sets of combinations at once. To keep track on combinations, give alternate ―Yes‖

and ―No‖ on the bottom row, put two ―Yes‖ and then two ―No‖ on the row above the bottom

row, etc., so the top row will have all ―Yes‖ and then all ―No‖ (Apply the same principle to all

such tables).

4M

(Decision

table:

descriptio

n:

2marks,

example:

2 marks)

Preview from Notesale.co.uk

Page 4 of 32

Page 10 of 32

c)

Ans:

d)

Ans:

ii) Automated testing can simulate tens, hundreds or thousands of virtual users interacting

with network or web software and applications.

Disadvantages of using automated tools for testing are as follows:

1. High investments required in package purchasing and training.
2. High package development investment costs.

3. High manpower requirements for test preparation.

4. Considerable testing areas left uncovered.

What is load testing and stress testing? Describe with respect to system testing.

Stress testing is testing the software under less than ideal conditions. So subject your software

to low memory, low disk space, slow cpus, and slow modems and so on. Look at your

software and determine what external resources and dependencies it has. Stress testing is

simply limiting them to bare minimum. With stress testing you starve the software.

For e.g. Word processor software running on your computer with all available memory and

disk space, it works fine. But if the system runs low on resources you had a greater potential

to expect a bug. Setting the values to zero or near zero will make the software execute

different path as it attempt to handle the tight constraint. Ideally the software would run

without crashing or losing data.

Load testing is testing the software under customer expected load. In order to perform load

testing on the software you feed it all that it can handle. Operate the software with largest

possible data files. If the software operates on peripherals such as printer, or communication

ports, connect as many as you can. If you are testing an internet server that can handle

thousands of simultaneous connections, do it. With most software it is important for it to run

over long periods. Some software‘s should be able to run forever without being restarted. So

Time acts as a important variable.

Stress testing and load testing can be best applied with the help of automation tools.

Stress testing and load testing are the types of performance testing.

The Microsoft stress utility program allows you to individually set the amounts of memory,

disk space, files and other resources available to the software running on the machine.

Example: Open many number of browsers in the windows simultaneously.

Connect more than the specifies clients to the server.

Connect more than one printer to the system.

List what are the different guidelines to be followed while selecting dynamic test tools.

i) Assessment of the organization‘s maturity (e.g. readiness for change);

ii) Identification of the areas within the organization where tool support will help to improve

testing processes;

iii) Evaluation of tools against clear requirements and objective criteria;

iv) Proof-of-concept to see whether the product works as desired and meets the requirements

and objectives defined for it;

v) Evaluation of the vendor (training, support and other commercial aspects) or open-source

network of support;

vi) Identifying and planning internal implementation (including coaching and mentoring for

those new to the use of the tool).

4M

(load

testing : 2

marks,

stress

testing : 2

marks)

4M

(Guidelin

es:

4marks)

Preview from Notesale.co.uk

Page 10 of 32

Page 18 of 32

b.

(i)

Ans:

3. Test coding standards:

a) Enforce right type of initialization

b) Stipulate ways of naming variables.

c) Encourage reusability of test artifacts

d) Provide standard interfaces to external entities like operating system, hardware and so

on.

4.Test reporting standard: All the stakeholders must get a consistent and timely view of the

progress of tests. It provides guidelines on the level of details that should be present in the

test report, their standard formats and contents.

Attempt any ONE of the following:

Explain V model with diagram.

V model means verification and validation model. It is sequential path of execution of

processes. Each phase must be completed before the next phase begins.

Under V-model, the corresponding testing phase of the development phase is planned in

parallel. So there is verification on one side of V & validation phase on the other side of V.

Verification Phase:

1. Overall Business Requirement: In this first phase of the development cycle, the product

requirements are understood from customer perspective. This phase involves detailed

communication with the customer to understand his expectations and exact requirements.

The acceptance test design planning is done at this stage as business requirements can be

used as an input for acceptance testing.

2. Software Requirement: Once the product requirements are clearly known, the system can

be designed. The system design comprises of understanding & detailing the complete

hardware, software & communication set up for the product under development. System

test plan is designed based on system design. Doing this at earlier stage leaves more time

for actual test execution later.

3. High level design: High level specification are understood & designed in this phase.

Usually more than one technical approach is proposed & based on the technical &

financial feasibility, the final decision is taken. System design is broken down further into

modules taking up different functionality.

4. Low level design: In this phase the detailed integral design for all the system modules is

specified. It is important that the design is compatible with the other modules in the

system & other external system. Components tests can be designed at this stage based on

the internal module design,

5. Coding: The actual coding of the system modules designed in the design phase is taken

up in the coding phase. The base suitable programming language is decided base on

requirements. Coding is done based on the coding guidelines & standards.

Validation:

1. Unit Testing: Unit testing designed in coding are executed on the code during this

validation phase. This helps to eliminate bugs at an early stage.

2. Components testing: This is associated with module design helps to eliminate defects in

individual modules.

3. Integration Testing: It is associated with high level design phase & it is performed to test

the coexistence & communication of the internal modules within the system

6

6M

(Diagram

: 2 marks,

verificatio

n

Explanati

on: 2

marks,

validation

Explanati

on: 2

marks)

Preview from Notesale.co.uk

Page 18 of 32

Page 25 of 32

6.

a)

Ans:

3. Functional testing: Functional Testing is a testing technique that is used to test the

features/functionality of the system or Software, should cover all the scenarios including

failure paths and boundary cases.

There are two major Functional Testing techniques as shown below:

4. Compatibility testing: Compatibility testing is a non-functional testing conducted on the

application to evaluate the application's compatibility within different environments. It can

be of two types - forward compatibility testing and backward compatibility testing.

Operating system Compatibility Testing - Linux , Mac OS, Windows

Database Compatibility Testing - Oracle SQL Server

Browser Compatibility Testing - IE , Chrome, Firefox

Other System Software - Web server, networking/ messaging tool, etc.

Attempt any FOUR of the following:

List the different techniques to detect defects. Describe any two of them.

Static Techniques: Static techniques of quality control define checking the software product

and related artifacts without executing them. It is also termed ‗desk checking/verification

/white box testing‘. It may include reviews, walkthroughs, inspection, and audits Here; the

work product is reviewed by the reviewer with the help of a checklist, standards, any other

artifact, knowledge and experience, in order to locate the defect with respect to the established

criteria. Static technique is so named because it involves no execution of code, product,

documentation, etc. This technique helps in establishing ‗conformance to requirements ‗view.

Dynamic Testing: Dynamic testing is a validation technique which includes dummy or actual

execution of work products to evaluate it with expected behavior. It includes black box testing

methodology such as system testing and unit testing. The testing methods evaluate the product

with respect to requirements defined, designs created and mark it as ‗pass ‗or ‗fail‘. This

technique establishes ‗fitness for use‘ view.

Operational techniques: Operational techniques typically include auditing work products and

projects to understand whether the processes defined for development /testing are being

followed correctly o not, and also whether they are effective or not. It also includes revisiting

the defects before and after fixing and analysis. Operational technique may include smoke

testing and sanity testing of a work product.

16

4M

(List: 1

mark,

Describin

g: 1.5

marks

each)

Preview from Notesale.co.uk

Page 25 of 32

Page 28 of 32

  Programmers love code coverage. It allows them to attach a number—an actual, hard, real

number, such as 75%—to the performance of their unit tests, and they can challenge

themselves to improve the score.

 Meanwhile, looking at the code that isn't covered also can yield opportunities for

improvement and bugs!

ii. Weaknesses

 Customer-level coverage tools are expensive, programmer-level tools that tend to assume

the team is doing automated unit testing and has a continuous-integration server and a fair

bit of discipline.

 After installing the tool, most people tend to focus on statement coverage—the least

powerful of the measures.

 Even decision coverage doesn't deal with situations where the decision contains defects, or

when there are other, hidden equivalence classes; say, in the third-party library that isn't

measured in the same way as your compiled source code is.

 Having code-coverage numbers can be helpful, but using them as a form of process

control can actually encourage wrong behaviours. In my experience, it's often best to leave

these measures to the programmers, to measure optionally for personal improvement (and

to find dead spots), not as a proxy for actual quality.

g) Regression and High-Volume Test Techniques

 People spend a lot of money on regression testing, taking the old test ideas described

above and rerunning them over and over.

 This is generally done with either expensive users or very expensive programmers

spending a lot of time writing and later maintaining those automated tests.

i. Strengths

 For the right kind of problem, say an IT shop processing files through a database, this kind

of technique can be extremely powerful.

 Likewise, if the software deliverable is a report written in SQL, you can hand the problem

to other people in plain English, have them write their own SQL statements, and compare

the results.

 Unlike state-transition diagrams, this method shines at finding the hidden state in devices.

For a pacemaker or a missile-launch device, finding those issues can be pretty important.

ii. Weaknesses

 Building a record/playback/capture rig for a GUI can be extremely expensive, and it might

be difficult to tell whether the application hasn't broken, but has changed in a minor way.

 For the most part, these techniques seem to have found a niche in IT/database work, at

large companies like Microsoft and AT&T, which can have programming testers doing

this work in addition to traditional testing, or finding large errors such as crashes without

having to understand the details of the business logic.

 While some software projects seem ready-made for this approach, others...aren't.

 You could waste a fair bit of money and time trying to figure out where your project falls.

Preview from Notesale.co.uk

Page 28 of 32

