ΔH	∆S	∆G	spontaneous
-	+	always -	yes
+	-	always +	no
+	+	either + or -	sometimes
-	-	either + or -	sometimes

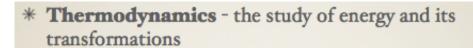
Spontaneity ->

- * The First Law of Thermodynamics
 - * The energy of the universe is constant.
 - * In a chemical rxn, energy is neither created nor destroyed.

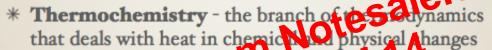
 - the energy doesn't disappear it just gets transformed form one form to this helps us understand that the net energy is not change.

spontaneous change - a change th under specified conditions of

Examples of Spontaneous Processes:


- * Water freezes when T = 0°C and P = 1 atm.
- * A candle burns. (Some spontaneous processes need a little push to get them going - needs to be lit by match)
 - if something is spontaneous than the reverse of that is not spontaneous (aka the reverse does require energy)
 - these examples are spontaneous but the reverse of them does require energy
- nonspontaneous change occurs only if surroundings supply continuous energy
 - * CO2 and H2O do not spontaneously produce wax and O2
 - * A change can only be spontaneous in one direction under a given set of conditions

- 7. combine
 - 1. 2Cu + O2 --> 2CuO ΔH=-310kJ
- 9. answer
 - 1. -310kJ


Thermochemistry ->

Potential Energy:

- All matter contains potential energy that comes from position
- Chemical Potential energy is energy due to position on the molecular or even atomic level
- In a rection electrons can release or gain potential energy
- when energy is produced in a reaction the reactants have more potential energy at the start and so they give some of it to the product

* First Law - The energy of the universe is constant.

^-- first law

also says that matter is neither create nor destroyed

blue water also as energy

Graphing Energy:

• going from N2+O2 --> 2NO you will have a curve that starts low has a little bump and then ends higher because it is releasing energy

Energy Transfer