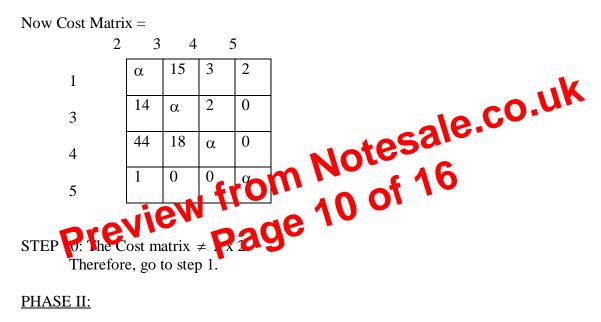
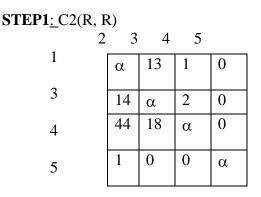
5th Sem.


STEP 7:

Calculation of effective cost [E.C] (1,2) = 2+1 = 3(2,1) = 12 + 3 = 15(3,5) = 2+0 = 2(4,5) = 3+0 = 3(5,3) = 0 + 12 = 12(5,4) = 0+2 = 2


STEP 8:

L having edge (2,1) is the largest.

STEP 9: Delete (2,1) from C1 and make change in it as $(1,2) \rightarrow \alpha$ if exists.

PHASE II:

<u>STEP 3:</u> C2 (C, R)

2 3 4 5 5th Sem.

Pick up an edge (i, j) with least cost index.

Here $(1,5) \rightarrow$ not possible because already chosen index i (i=j) $(3,5) \rightarrow$ not possible as already chosen index. $(4,5) \rightarrow 0$

Hence, $T \leftarrow (3,2), (1,4), (4,5)$

Use C1 =

1	2	3	4	4	5
1 2 3 4	α	0	15	3	2
	0	α	12	22	20
	18	14	α	2	0
5	3	44	18	α	0
-	15	1	0	0	α

 $HENCE T \leftarrow (1,2) \Rightarrow Not possible (2,1) \Rightarrow Choose it Notesale.co.uk$ $HENCE T \leftarrow (3,2), (1,4), (4,5), (2,0) How be above list 3-2-1-4 T$ This result T

This result now, we have to return to the same city where we started (Here 3).

Final result:

-2-1-4-5-33-

Cost is 15+15+31+6+7=64