4. If 'm' articles are given free on a purchase of 'n' articles then **Discount%** = $\frac{m}{n+m} \times 100$

5. If $C.P_{n \ articles} = S.P_{m \ articles}$, then **Profit/Loss%** = $\frac{m-n}{n} \times 100$

6. If a shopkeeper uses a false weight of 'x kg' instead of 'y kg' (where x < y) and professes to sell the article at the C.P, then his **Profit% =** $\frac{y-x}{x}$ x 100

7. If a shopkeeper uses a false weight of 'x kg' instead of 'y kg' (where x is **'k%'** less than y) and professes to sell the article at **'p%'** profit, then his **Actual Profit%** = $\frac{(p+k)}{(100-k)}$ x **100**

Simple Interest & Compound Interest:

Principal (P): Money lent or borrowed

Rate of Interest (R): Percentage of Principal paid as interest. Generally, R is given yearly i.e. per annum

Time period (T): Duration for which the amount is lent or borrowed.

Amount (A): Total money paid to clear the principal as well as interest.

Simple Interest (S.I): When the interest is calculated only over the principal.

1. S.I =
$$\frac{P \times R \times T}{100}$$

2. A = P + S.I
3. If an amount becomes 'k' times of itself when given as 12° ate of interest, then
R = (k-1) $\times \frac{100}{k}$
Compound Interest (1.0° When the interest is threalated over the principal as well as interest also.
1. A = P $\times (1 + \frac{R}{100})^T$

If nothing specific is mentioned then the interest would be compounded annually otherwise if the interested is compounded after every 'k' months then use $(\frac{kR}{12})$ instead of R and $(\frac{12T}{K})$ instead of T

3. If the amount for the n^{th} year and the $(n+k)^{th}$ year be 'x' and 'y' respectively, then

R =
$$[(\frac{y}{x})^{\frac{1}{k}} - 1] \times 100$$

Hence, if the amount for two consecutive years be 'p' and 'q' then $\mathbf{R} = \frac{(q-p)}{n} \mathbf{x}$ 100

Difference between C.I and S.I:

1.
$$(C.I - S.I)_{1 yr} = 0$$

2. $(C.I - S.I)_{2 yr} = P(\frac{R}{100})^2$
3. $(C.I - S.I)_{3 yr} = 3P(\frac{R}{100})^2 + P(\frac{R}{100})^3$