
Example:

Algorithm for addition of two numbers using function
Main function()

Step 1: Start

Step 2: Call the function add()

Step 3: Stop

sub function add()

Step 1: Function start

Step 2: Get a, b Values

Step 3: add c=a+b

Step 4: Print c

Step 5: Return

NOTATIONS

FLOW CHART

Flow chart is defined as graphical representation of the logic for problem

solving.

The purpose of flowchart is making the logic of the program clear in a visual

representation.

Preview from Notesale.co.uk

Page 6 of 76

5. Only one flow line is used with a terminal symbol.

6. Within standard symbols, write briefly and precisely.

7. Intersection of flow lines should be avoided.

Advantages of flowchart:

1. Communication: - Flowcharts are better way of communicating the logic

of a system to all concerned.

2. Effective analysis: - With the help of flowchart, problem can be analyzed

in more effective way.

3. Proper documentation: - Program flowcharts serve as a good

program documentation, which is needed for various purposes.

4. Efficient Coding: - The flowcharts act as a guide or blueprint during the

systems analysis and program development phase.

5. Proper Debugging: - The flowchart helps in debugging process.

6. Efficient Program Maintenance: - The maintenance of operating

program becomes easy with the help of flowchart. It helps the programmer to

put efforts more efficiently on that part.

Disadvantages of flow chart:

1. Complex logic: - Sometimes, the program logic is quite complicated. In

that case, flowchart becomes complex and clumsy.

2. Alterations and Modifications: - If alterations are required the flowchart

may require re-drawing completely.

3. Reproduction: - As the flowchart symbols cannot be typed, reproduction

of flowchart becomes a problem.

4. Cost: For large application the time and cost of flowchart drawing

becomes costly.

Preview from Notesale.co.uk

Page 19 of 76

Functional programming language:

Functional programming language defines every computation as a

mathematical evaluation. They focus on the programming languages are

bound to mathematical calculations

Examples:

Clean

Haskell

Compiled Programming language:

A compiled programming is a programming language whose implementation

are typically compilers and not interpreters.

It will produce a machine code from source code.

Examples:

C

C++

C#

JAVA

Procedural programming language:

Procedural (imperative) programming implies specifying the steps that the

programs should take to reach to an intended state.

A procedure is a group of statements that can be referred through a procedure

call. Procedures help in the reuse of code. Procedural programming makes the

programs structured and easily traceable for program flow.

Examples:

Hyper talk

MATLAB

Scripting language:

Scripting language are programming languages that control an application.

Scripts can execute independent of any other application. They are mostly

embedded in the application that they control and are used to automate

frequently executed tasks like communicating with external program.

Examples:

Preview from Notesale.co.uk

Page 27 of 76

Proving an Algorithm’s Correctness
v Once an algorithm has been specified, you have to prove its correctness. That

is, you have to prove that the algorithm yields a required result for every

legitimate input in a finite amount of time.

v A common technique for proving correctness is to use mathematical

induction because an algorithm’s iterations provide a natural sequence of steps

needed for such proofs.

v It might be worth mentioning that although tracing the algorithm’s

performance for a few specific inputs can be a very worthwhile activity, it

cannot prove the algorithm’s correctness conclusively. But in order to show

that an algorithm is incorrect, you need just one instance of its input for which

the algorithm fails.

Analysing an Algorithm
1. Efficiency.

Time efficiency, indicating how fast the algorithm runs,

Space efficiency, indicating how much extra memory it uses.

2. simplicity.

v An algorithm should be precisely defined and investigated with

mathematical expressions.

v Simpler algorithms are easier to understand and easier to program.

v Simple algorithms usually contain fewer bugs.

Coding an Algorithm
v Most algorithms are destined to be ultimately implemented as computer

programs. Programming an algorithm presents both a peril and an

opportunity.

v A working program provides an additional opportunity in allowing an

empirical analysis of the underlying algorithm. Such an analysis is based on

timing the program on several inputs and then analysing the results obtained.

SIMPLE STRATEGIES FOR DEVELOPING ALGORITHMS:

1. iterations

2. Recursions

Preview from Notesale.co.uk

Page 31 of 76

1. Iterations:

A sequence of statements is executed until a specified condition is true is called

iterations.

1. for loop

2. While loop

Syntax for For:
FOR(start-value to end-value) DO

Statement

...

ENDFOR

Example: Print n natural numbers

BEGIN

GET n

INITIALIZE i=1

FOR (i<=n) DO

PRINT i

i=i+1

ENDFOR

END

Syntax for While:

WHILE (condition) DO

Statement

...

ENDWHILE

Example: Print n natural numbers

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

PRINT i

i=i+1

ENDWHILE

END

Preview from Notesale.co.uk

Page 32 of 76

Pseudo code for factorial using recursion:

Main function:

BEGIN

GET n

CALL factorial(n)

PRINT fact

BIN

Sub function factorial(n):

IF(n==1) THEN

 fact=1

 RETURN fact

ELSE

 RETURN fact=n*factorial(n-1)

More examples:

Write an algorithm to find area of a rectangle

Preview from Notesale.co.uk

Page 34 of 76

BEGIN

READ r

CALCULATE A and C

A=3.14*r*r

C=2*3.14*r

DISPLAY A

END

Write an algorithm for Calculating simple interest

Step 1: Start

Step 2: get P, n, r value

Step3:Calculate

SI=(p*n*r)/100

Step 4: Display S

Step 5: Stop

Preview from Notesale.co.uk

Page 36 of 76

BEGIN

READ a, b, c

IF (a>b) THEN

IF(a>c) THEN

DISPLAY a is greater

ELSE

DISPLAY c is greater

END IF

ELSE

IF(b>c) THEN

DISPLAY b is greater

ELSE

DISPLAY c is greater

END IF

END IF

END

Write an algorithm to check whether given number is +ve, -ve or

zero.

Step 1: Start

Step 2: Get n value.

Step 3: if (n ==0) print “Given number is Zero” Else goto step4

Step 4: if (n > 0) then Print “Given number is +ve”

Preview from Notesale.co.uk

Page 42 of 76

BEGIN

GET n

INITIALIZE i=1,fact=1

WHILE(i<=n) DO

 fact=fact*i

 i=i+1

ENDWHILE

PRINT fact

END

Write an algorithm to find area of a rectangle

Step 1: Start

Step 2: get l,b values

Step 3: Calculate A=l*b

Step 4: Display A

Step 5: Stop

Preview from Notesale.co.uk

Page 50 of 76

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

 PRINT i*i

 i=i+2

ENDWHILE

END

Write an algorithm to print to print cubes of a number
Step 1: start

step 2: get n value

step 3: set initial value i=1

step 4: check i value if(i<=n) goto step 5 else goto step8

step 5: print i*i *i value

step 6: increment i value by 1

step 7: goto step 4

step 8: stop

Preview from Notesale.co.uk

Page 63 of 76

area of rectangle using function
def area():

l=eval(input(“enter the length of rectangle”))

b=eval(input(“enter the breath of rectangle”))

a=l*b

print(“the area of rectangle is”,a)

area()

Output

enter the length of

rectangle 20

enter the breath of

rectangle 5

the area of rectangle is

100

swap two values of variables
def swap():

a=eval(input("enter a value"))

b=eval(input("enter b value"))

c=a

a=b

b=c

print("a=",a,"b=",b)

swap()

Output

enter a value3

enter b value5

a= 5 b= 3

check the no divisible by 5 or not
def div():

n=eval(input("enter n value"))

if(n%5==0):

print("the number is divisible by 5")

else:

Preview from Notesale.co.uk

Page 73 of 76

print("the number not divisible by 5")

div()

Output

enter n value10

the number is divisible by

5

find reminder and quotient of given no
def reminder():

a=eval(input("enter a"))

b=eval(input("enter b"))

R=a%b

print("the reminder is",R)

def quotient():

a=eval(input("enter a"))

b=eval(input("enter b"))

Q=a/b

print("the reminder is",Q)

reminder()

quotient()

Output

enter a 6

enter b 3

the reminder is 0

enter a 8

enter b 4

the reminder is 2.0

convert the temperature
def ctof():

c=eval(input("enter temperature in centigrade"))

f=(1.8*c)+32

print("the temperature in Fahrenheit is",f)

def ftoc():

f=eval(input("enter temp in Fahrenheit"))

Preview from Notesale.co.uk

Page 74 of 76

