
How to Calculate Time Complexity of an Algorithm + Solved Questions (With Notes)
CodeWithHarry
Before Solving Some Questions of Time Complexity I will tell you some tricks to
get rid of time complexity. After that we will do some set of questions. which
will make you a very good grasp in such questions. due to the time complexity of
any algorithm when you have to find it so what is the first step that you do and
at the same time how to approach this problem. In this way, whatever
instructions are going on here , it is taking almost (k) time. We believe that
these operations are all (k) time consuming This for loop , that is , how much
time is being taken for this fragment It seems (kn) , okay So before this
(int i) would have been written here, (int k=0) would be written here. The
third technique that I want to tell you is this : That break the code into
fragments. The first fragment turned out to be this one , with a little bit of
initialization. It took constant time because it is not such that if the value
of (n) increases, then its time will increases.

I will go for (n = 100) to determine whether i will be going for n = 1000. I
will accept it in (k4) and (n * k4) I will do it in k4 and (n* k4), and it
will happen O (n²) If you do it (k=0) , (k < n) and if you look at it , it
will come out O (n²) Okay, it will not (N²) ok remember you this thing. There
will be some code on it which will take (k1) Now I have become so smart, by
doing questions , and you will be done too That (k1) it is will going to be non-
dominant , if constant is being added then we will remove it. So once the value
of (i) will be zero (0) and then the value of (j) will run for. Then (j=1)
will become Then (0,2) Then (i=0 , and j=0) will then run for Okay. The value
of (i) will be zero (0) for (n) times running then the value of (i) will
become (1) , it will run again (n) times then it will go on till n. When (n)
is running out, watch carefully , watch very closely. Then later I will ask the
question, then I am telling if it is not done. value of i will be (1) , (n),
it will be n-1 because I am taking the index (i=0) then (i=n-1) will be and
here is (n- 1)

I told you guys If it 's not clear to you why it will work (n²) times So I 'd
say let 's go look at it for 3 and 3 and print here (i , j) and make a count
variable and count it , how many times it is running You write (c) program ,
write in Python, write in Java, write in Python and write in the Java. But when
there are 2 loops inside one , then that will run for n² times. And if another
loop is given inside it , then it will run (n³) times. If there is a double
for loop, then it becomes straight (n²) I have handpicked some questions which
I am going to give to you guys here. And I have also given their programs to
you. So you see here I have opened this folder in visual studio code. So it 's
saying that Find the time complexity (Func1) function in the program shown in
program1. c as follows. Even if you come from another programming language
nothing is going to be change. The time of (F1+F2+F3) will be that I will take
as the overall time of the whole function. The time is not depending on Array 's
length so i 'll accept it (k1) and I can not accept (F2) as (k) , i will
accept it as k2 * n. So now if I find a total time complexity that is , if I T (
n) come out , then what will it be ? T (n) will be done as T (N) =F1 +F2 +F3.

Preview from Notesale.co.uk

Page 3 of 3

