
model real-world objects such as a line of train carts. \n\nTerminology 

concerning linked lists is also discussed, including the head and tail of the list, 

the nodes, and the pointers or references which point to the next node. There 

are two types of linked lists, singly linked and doubly linked. Singly linked lists 

only contain a pointer to the next node, while doubly linked lists contain a 

pointer to the previous node as well. The pros and cons of using singly and 

doubly linked lists are discussed, including the fact that singly linked lists use 

less memory but cannot access previous elements, while doubly linked lists 

can access previous elements but use more memory. 

Doubly linked lists allow for easier traversal backwards and removal in 

constant time, but use twice as much memory as singly linked lists. Inserting 

and removing elements involve seeking to the position in the list and 

changing the appropriate pointers. Singly linked lists require two pointers to 

remove an element, while doubly linked lists only require one. Searching for 

an element in a linked list takes linear time in the worst case. Adding or 

removing elements at the head or tail is done in constant time, but removing 

from the tail of a singly linked list takes linear time. The article also includes 

source code for a doubly linked list implementation in Java. 

To remove the head or tail, the data is extracted and the head/tail pointers are 

moved accordingly, and memory deallocation is performed if needed. To 

remove an arbitrary node, the adjacent pointers are adjusted to skip over the 

node, and memory cleanup is performed. It's also possible to remove a node 

at a particular index or with a particular value using a linear search. The text 

then introduces stacks as a data structure that models real-world stacks, where 

elements are added and removed from the top. Stacks have two primary 

operations, push and pop, and are used in various applications such as text 

editors, compilers, and graph traversals. Stacks have constant time complexity 

for pushing, popping, and peeking, but linear time complexity for searching. 

The text concludes with an example problem that uses stacks, which is to 

determine whether a string with brackets is properly matched. The solution 

involves using a stack to keep track of left brackets and checking if right 

brackets match the top element of the stack. 
 

Preview from Notesale.co.uk

Page 2 of 2


