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2 Rings and Ideals (1.4)

Given T C X, clearly xs - x7 = xsnr. Further, xs + xr = xsar, where SAT
is the symmetric difference:

SAT :=(SUT)—(SNT)=(S-T)uU (T - 9);

here S — T denotes, as usual, the set of elements of S not in 7. Thus the subsets
of X form a ring: sum is symmetric difference, and product is intersection. This
ring is canonically isomorphic to Fx .

A ring B is said to be Boolean if f2 = f for all f € B. Clearly, F¥ is Boolean.

Suppose X is a topological space, and give Fy the discrete topology; that is,
every subset is both open and closed. Consider the continuous functions f: X — Fs.
Clearly, they are just the xg where S is both open and closed. Clearly, they form
a Boolean subring of F2'. Conversely, Stone’s Theorem (13.25) asserts that every
Boolean ring is canonically isomorphic to the ring of continuous functions from a
compact Hausdorff topological space X to Fo, or equivalently, isomorphic to the ring
of open and closed subsets of X.

(1.3) (Polynomial rings). — Let R be a ring, P := R[X1,...,X,,] the polynomial
ring in n variables (see [2, pp.352-3] or [8, p.268]). Recall that P has thisﬁ
versal Mapping Property (UMP): given a ring map <p R — E @ iy
element x; of R’ for each i, there is a unique Ting ma ith m|R = ¢
and 7(X;) = x;. In fact, since 7 is a ring map, (@ glven by the formula:

(S WS
In other yvord ﬁ& Qamong b 'su % with a list of n elements:
P 15% ps unlquel an 0
P ({ rly, let P g) ] be the polynomlal ring in an arbitrary list of

ariables: its eleme olynomials in any finitely many of the X; sum and
product are deﬁne as in P. Thus P’ contains as a subring the polynomial ring
in any finitely many X, and P’ is the union of these subrings. Clearly, P’ has
essentially the same UMP as P: given ¢: R — R’ and given x) € R’ for each ),
there is a unique m: P — R’ with 7|R = ¢ and 7(X)) = .

(1.4) (Ideals). — Let R be a ring. Recall that a subset a is called an ideal if

(1) 0 € q,
(2) whenever a,b € a, also a + b € a, and
(3) whenever € R and a € a, also za € a.

Given elements ay € R for A € A, by the ideal (a))rea they generate, we mean
the smallest ideal containing them all. If A = (3, then this ideal consists just of 0.

Any ideal containing all the ay contains any (finite) linear combination ) xjay
with ) € R and almost all 0. Form the set a, or > Ray, of all such linear
combinations; clearly, a is an ideal containing all a. Thus a is the ideal generated
by the ay.

Given a single element a, we say that the ideal (a) is principal. By the preceding
observation, {(a) is equal to the set of all multiples xa with = € R.

Similarly, given ideals a) of R, by the ideal they generate, we mean the smallest
ideal > ay that contains them all. Clearly, > ay is equal to the set of all finite
linear combinations Y zjay with ) € R and ay € ay.



4 Rings and Ideals (1.10)

p(a) = 0, there is a unique ring map ¥: R/a — R’ such that ¥k = . In other
words, R/a is universal among R-algebras R’ such that aR’ = 0.

Above, if a is the ideal generated by elements ay, then the UMP can be usefully
rephrased as follows: k(ay) =0 for all \, and given ¢: R — R’ such that ¢(ay) =0
for all \, there is a unique ring map : R/a — R’ such that k= ¢

The UMP serves to determine R/a up to unique isomorphism. Indeed, say R’,
equipped with ¢: R — R/, has the UMP too. Then ¢(a) = 0; so there is a unique
¥: R/a — R’ with ¥k = ¢. And k(a) = 0; so there is a unique ¢': R’ — R/a with
' = k. Then, as shown, (¢'1)k = k, but 1 0k = K where 1

R/a
=7

R — R 1
AV

R/a

is the identity map of R/a; hence, 1’1 = 1 by uniqueness. Similarly, ¢)’ = ﬁK
1 now stands for the identity map of R’. Thus 3 and v’ ar 1nvers ph

The preceding proof is completely formal, and so wor re are many
more constructions to come, and each one has MP Wthh therefore
#omorphi

serves to determine the construction w
EXERCISE (1.7). —, a an 1de ER [X1,...,X,] the
polynomlal ring ro % / a
\’ — Let [X] the polynomial ring in one
&é a 6 R he R algebm map defined by w(X) := a. Then
er(m

ProoF: Given F ) € P, the Division Algorithm yields F(X) = G(X)(X—a)+b
with G(X) € P and b€ R. Then n(F(X)) =b. Hence Ker(m) = (X — a). Finally,
(1.6.1) yields R[X]/(X —a) = R. O

(1.9) (Nested ideals). — Let R be aring, a an ideal, and x: R — R/a the quotient
map. Given an ideal b D a, form the corresponding set of cosets of a:
b/a:={b+a|beb}=rk(b)

Clearly, b/a is an ideal of R/a. Also b/a = b(R/a).

Clearly, the operations b — b/a and b’ — k=(b") are inverse to each other, and
establish a bijective correspondence between the set of ideals b of R containing a and
the set of all ideals b’ of R/a. Moreover, this correspondence preserves inclusions.

Given an ideal b D a, form the composition of the quotient maps

¢: R— R/a— (R/a)/(b/a).
Clearly, ¢ is surjective, and Ker(y) = b. Hence, owing to (1.6), ¢ factors through
the canonical isomorphism v in this commutative diagram:
R—— R/b
I

R/a — (R/a)/(b/a)
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EXERCISE (1.10). — Let R be ring, and P := R[Xj, ..., X,] the polynomial ring.
Let m < n and ay,...,a, € R. Set p := (X3 —a1,...,X;m — am). Prove that
P/p = R[X’m+17"'aXn]‘

(1.11) (Idempotents). — Let R be a ring. Let e € R be an idempotent; that is,

e? = e. Then Re is a ring with e as 1, because (re)e = re. But Re is not a subring

of R unless e = 1, although Re is an ideal.

Set ¢’ := 1 —e. Then ¢ is idempotent and e - e’ = 0. We call e and ¢/ comple-
mentary idempotents. Conversely, if two elements e1,es € R satisfy e; +e3 =1
and ejes; = 0, then they are complementary idempotents, as for each ¢,

ei=e;i-1=eiler +ep) =er.

We denote the set of all idempotents by Idem(R). Let ¢: R — R’ be a ring map.
Then ¢(e) is idempotent. So the restriction of ¢ to Idem(R) is a map

Idem(p): Idem(R) — Idem(R’).

EXAMPLE (1.12). — Let R:= R’ x R” be a product of two rings: its operati S
are performed componentwise. The addltlve 1dent1ty is (0,0); the 11 a

identity is (1,1). Set e := (1,0) and €’ . Then e ang e n ary

idempotents. The next proposition bhOWb thlb exam e possible.

PROPOSITION (1.13). — Let R be o @&Q ment zdempotents e and
e'. Set R := Re and R = m a x R defined by
7

o(z) = (xe xe'). T g zsomorphz

IVISE map <p R = ze. Then ¢’ is a ring map since
( :ce effhe gp” RHR” by ¢”(z) := z€’; then ¢ is a
ing map. So ¢ is a urther, ¢ is surjectlve since (ze, a'e ) o(ze+a'e).

Also, ¢ is injective, since if ze = 0 and ze’ = 0, then = ze + xe’ = 0. Thus ¢ is
an isomorphism. O

EXERCISE (1.14) (Chinese Remainder Theorem). — Let R be a ring.

(1) Let a and b be comaximal ideals; that is, a + b = R. Prove
(a) ab=anb and (b) R/ab=(R/a) x (R/b).

(2) Let a be comaximal to both b and b’. Prove a is also comaximal to bb’.
(3) Let a, b be comaximal, and m,n > 1. Prove a™ and b” are comaximal.
(4) Let ay,...,a, be pairwise comaximal. Prove

(a) a; and ay - -- @, are comaximal;

(b) ayN---Na, =ag---ap;

(c) R/(ar---an) = [[(R/a;).
EXERCISE (1.15). — First, given a prime number p and a k > 1, find the idempo-
tents in Z/(p*). Second, find the idempotents in Z/(12). Third, find the number
of idempotents in Z/(n) where n = vazl p;* with p; distinct prime numbers.

EXERCISE (1.16). — Let R := R’ x R” be a product of rings, a C R an ideal.
Show a = o/ x a” with o’ C R" and a” C R” ideals. Show R/a = (R'/a’) x (R"/a").
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(2.6) (Unique factorization). — Let R be a domain, p a nonzero nonunit. We call
p prime if, whenever p | zy (that is, there exists z € R such that pz = zy), either
p|x orp|y. Clearly, p is prime if and only if the ideal (p) is prime.

We call p irreducible if, whenever p = yz, either y or z is a unit. We call R a
Unique Factorization Domain (UFD) if every nonzero element is a product of
irreducible elements in a unique way up to order and units.

In general, prime elements are irreducible; in a UFD, irreducible elements are
prime. Standard examples of UFDs include any field, the integers Z, and a poly-
nomial ring in n variables over a UFD; see [2, p. 398, p.401], [8, Cor. 18.23, p. 297].

LEMMA (2.7). — Let ¢: R — R’ be a ring map, and T C R’ a subset. If T is
multiplicative, then 0~ T is multiplicative; the converse holds if ¢ is surjective.

PROOF: Set S := o 'T. If T is multiplicative, then 1 € S as ¢(1) =1 € T, and
x,y € S implies zy € S as p(xy) = p(z)p(y) € T; thus S is multiplicative.

If S is multiplicative, then 1 € T as 1 € S and ¢(1) = 1; further, z,y € S implies
o(x), (y), p(zy) € T. If ¢ is surjective, then every a’ € T is of the form 2’ = p(x
for some = € S. Thus if ¢ is surjective, then T is multiplicative if ¢ ~'T is. %

PROPOSITION (2. 8) — Let ¢: R — R’ be a ring map, and q - R’ @ea
is prime, then ¢ ~1q is prime; the converse holds if ¢ is suse

PRrROOF: By (2.7), R—p is multiplicative 1f qis. So the assertlon

R/p is a domaig,

ES .B), pis prl d C R/p is. So the assertion results
P ﬁ eﬁmtlo [l

EXERCISE (2. 10) Let R be a domain, and R[X7, ..., X,] the polynomial ring
in n variables. Let m < n, and set p := <X1, ...y Xm). Prove p is a prime ideal.

results from Definitions (2.1). w
COROLLARY (2.9). ‘fﬁmm p an zde brime if and only if

EXERCISE (2.11). — Let R := R’ x R” be a product of rings, p C R an ideal.
Show p is prime if and only if either p = p’ x R” with p’ C R’ prime or p = R’ x p”
with p” C R” prime.

EXERCISE (2.12). — Let R be a domain, and z,y € R. Assume (z) = (y). Show
x = uy for some unit u.

DEFINITION (2.13). — Let R be a ring. An ideal m is said to be maximal if m is
proper and if there is no proper ideal a with m  a.

EXAMPLE (2.14). — Let R be a domain. In the polynomial ring R[X,Y] in two
variables, (X) is prime by (2.10). However, (X) is not maximal since (X) G (X,Y).
Moreover, (X,Y) is maximal if and only if R is a field by (1.10) and by (2.17)
below.

PROPOSITION (2.15). — A ring R is a field if and only if (0) is a mazimal ideal.

PRrROOF: Suppose R is a field. Let a be a nonzero ideal, and a a nonzero element
of a. Since R is a field, a € R*. So (1.4) yields a = R.

Conversely, suppose (0) is maximal. Take z # 0. Then (z) # (0). So (z) = R.
So x is a unit by (1.4). Thus R is a field. O



3. Radicals

Two radicals of a ring are commonly used in Commutative Algebra: the Jacobson
radical, which is the intersection of all maximal ideals, and the nilradical, which is
the set of all nilpotent elements. Closely related to the nilradical is the radical of
a subset. We define these three radicals, and discuss examples. In particular, we
study local rings; a local ring has only one maximal ideal, which is then its Jacobson
radical. We prove two important general results: Prime Avoidance, which states
that, if an ideal lies in a finite union of primes, then it lies in one of them, and
the Scheinnullstellensatz, which states that the nilradical of an ideal is equal to the
intersection of all the prime ideals containing it.

DEFINITION (3.1). — Let R be a ring. Its (Jacobson) radical rad(R) is defined
to be the intersection of all its maximal ideals.

PROPOSITION (3.2). — Let R be a ring, © € R, and u € R*. Then x € rad(R)yi/,
and only if u— xy € rad(R) is a unit for ally € R. In particular the sumyo ¥
element of rad(R) and a unit is a unit.

PROOF: Assume z € rad(R). Let m be a maxi \@pose u—axy €m.
Since z € m too, also u € m, a contr xy 15 a unit by (2.31). In
particular, taking y : yields
Conversely, assum @X\T hen there i al m with z ¢ m.
So (z) + er& exist nd that xy +m = u. Then
u— ou—xyis @ ) or directly by (1.4). O
P@%{ ISE (3.3). ?@ ing, a C rad(R) an ideal, w € R, and w’ € R/a
its residue. Prove tRat w € if and only if w’ E (R/a)*. What if a ¢ rad(R)?
COROLLARY (3.4). — Let R be a ring, a an ideal, k: R — R/a the quotient map.

Assume a C rad(R). Then Idem(k) is injective.

PROOF: Given e, e’ € Idem(R) with k(e) = k(e’), set z := e —e’. Then

=P —3e%e +3ee? — e =e—¢ =1

Hence x(1 — 22) = 0. But k(x) = 0; so # € a. But a C rad(R). Hence 1 — 22 is a
unit by (8.2). Thus « = 0. Thus Idem(k) is injective. O

DEFINITION (3.5). — A ring A is called local if it has exactly one maximal ideal,
and semilocal if it has at least one and at most finitely many.

LEMMA (3.6) (Nonunit Criterion). — Let A be a ring, n the set of nonunits. Then
A is local if and only if n is an ideal; if so, then n is the mazximal ideal.

PROOF: Every proper ideal a lies in n as a contains no unit. So, if n is an ideal,
then it is a maximal ideal, and the only one. Thus A is local.

Conversely, assume A is local with maximal ideal m. Then A —n = A —m by
(2.31). So n=m. Thus n is an ideal. O

EXAMPLE (3.7). — The product ring R’ x R” is not local by (3.6) if both R’ and
R" are nonzero. Indeed, (1,0) and (0, 1) are nonunits, but their sum is a unit.

11
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EXERCISE (4.19). — Let L be a module, A a nonempty set, M, a module for
A € A. Prove that the injections ¢, : M, — @ M) induce an injection

@ Hom(L, My) — Hom(L, @ M,),
and that it is an isomorphism if L is finitely generated.

EXERCISE (4.20). — Let a be an ideal, A a nonempty set, M) a module for A € A.
Prove a(€@ M,) = @ aMy. Prove a(J] M) = [[aM, if a is finitely generated.
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maximality, (a1) = y(N). But (b) C {(¢). Thus 5(y1) =b € (a1).

Write y1 = Y eaey for some ¢y € R. Then 7y (y1) = cx. But ¢y = a;d) for some
dy € R by the above paragraph with 8 := my. Set x1 := > dyex. Then y; = a1;.

So a1(y1) = arai(z1). But ay(y1) = a1. So arag(z1) = a1. But R is a domain
and a; # 0. Thus a4 (z1) = 1.

Set M; := Ker(ay). As aj(x1) =1, clearly Rzy N M; = 0. Also, given x € M,
write © = ai(x)z1 + (x — ay(x)z1); thus @ € Rxq + M;. Hence (4.17) implies
M = Rxy @ M. Further, M, is free by (4.14). Set Ny := M; N N.

Recall a1x1 = y1 € N. So N D Rajxy @ N;. Conversely, given y € N, write
y = bxy +my with b € R and m; € M;. Then a;1(y) = b, so b € {a1). Hence
y € Rajx1 + Ni. Thus N = Rajx1 © Ni.

Define ¢: R — Rajz1 by ¢(a) = aayxy. If p(a) =0, then aa; =0 as ag(z1) =1,
and so a = 0 as a; # 0. Thus ¢ is injective, so a isomorphism.

Note N; ~ R™ with m < n owing to (4.14) with N for E. Hence N ~ R™1,
But N ~ R". So (5.32)(2) yields m + 1 = n.

By induction on n, there exists a decomposition M; = M| & M" and elements

To Tn € M| and ag, an € R such that K
Mj = Rxy @ - ® Rx,, N1 = Ragxs® - @ Rapty,, ( g’ M
Then M = M' & M"” and M’ = Rz, & - @R:rn and

Also (a1) D -+ D (an) # 0. Thus existence is

Finally, consider the projection : t T xj % for j <2 <nand

&b Ran:vn

7T|M” = 0 Define p: M — R :rl alml = a1 So
=a N&t ality, P( az = plagwz) € p(N).
Thus éxhi) 3‘3
w {m 6 EA’f ome x € R}. Thus M’ is determined.
@é .37)(2 M, each a; is determined up to unit multiple. O
THEOREM (5. 39) Let A be a local ring, M a finitely presented module.

(1) Then M can be generated by m elements if and only if F,,,(M) = A.
(2) Then M is free of rank m if and only if Fr(M) = A and F,,,_1(M) = (0).

ProoF: For (1), assume M can be generated by m elements. Then (4.10)(1)
and (5.26) yield a presentation A % A™ — M — 0. So F,,(M) = A by (5.34).

For the converse, assume also M cannot be generated by m —1 elements. Suppose
Fp(M) = A with k < m. Then F,,,_1(M) = A by (5.35.1). Hence one entry of
the matrix (a;;) of @ does not belong to the maximal ideal, so is a unit by (3.6).
By (5.33)(2), we may assume ai; = 1 and the other entries in the first row and
first column of A are 0. Thus A = (§ §) where B is an (m — 1) x (s — 1) matrix.
Then B defines a presentation A1 — A™~! — M — 0. So M can be generated
by m — 1 elements, a contradiction. Thus Fy,(M) # A for k < m. Thus (1) holds.

In (2), if M is free of rank m, then there’s a presentation 0 — A™ — M — 0;
s0 Fn(M) = A and F,,,_1(M) = (0) by (5.35). Conversely, if F,,,(M) = A, then
(1) and (5.26) and (4.10)(1) yield a presentation A® % A™ — M — 0. If also
Fr—1(M) = (0), then & = 0 by (5.35). Thus M is free of rank m; so (2) holds. O

PROPOSITION (5.40). — Let R be a ring, and M a finitely presented module. Say
M can be generated by m elements. Set a := Ann(M). Then

(1) aF.(M) C F._1(M) for allr >0 and (2) a™ C Fo(M) C a.
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PROOF: As M can be generated by m elements, (4.10)(1) and (5.26) yield a
presentation A” % A™ X M — 0. Say o has matrix A.

In (1), if > m, then trivially aF,.(M) C F,._1(M) owing to (5.35.1). So assume
r <m and set s :=m —r + 1. Given x € a, form the sequence

R By pmo B N 0 with 8= a + 21 gm.

Note that this sequence is a presentation. Also, the matrix of 8 is (A]z1,,), obtained
by juxtaposition, where I,,, is the m x m identity matrix.

Given an (s —1) x (s — 1) submatrix B of A, enlarge it to an s x s submatrix B’
of (A2I,,) as follows: say the ith row of A is not involved in B; form the m x s
submatrix B” of (A|zI,,) with the same columns as B plus the ith column of zI,,
at the end; finally, form B’ as the s X s submatrix of B” with the same rows as B
plus the ith row in the appropriate position.

Expanding along the last column yields det(B’) = +x det(B). By constuction,
det(B') € I;(Alzl,,). But I;(A|zL,) = I5(A) by (5.34). Furthermore, z € a is
arbitrary, and I,,(A) is generated by all possible det(B). Thus (1) holds.

For (2), apply (1) repeatedly to get a*F,.(M) C F,_x(M) for all » and k. But

F,,(M) = R by (5.35.1). So a™ C Fo(M).

For the second inclusion, given any m x m submatrix B of A, say u
e; be the ith standard basis vector of R™. Set m; := ,u he ljmj =0
for all 7. Let C be the matrix of cofactors of B: yiof Cis (—1)"t
times the determinant of the matrix gbtgi @ g the jth row and the ith
column of B Then CB = det % 1 i. So det(B) €
But I,,(A) is genera‘d{a@l Thuf hus (2) holds. D

prevt® page A2°



38  Direct Limits (6.7)

(6.6) (Direct limits). — Let A, C be categories. Assume A is small; that is, its
objects form a set. Given a functor A\ — M) from A to C, its direct limit or
colimit, denoted liﬂMA or lig)\eA M, is defined to be the object of € universal
among objects P equipped with maps 5u M, — P, called insertions, that are
compatible with the transition maps aj,: M, — M, which are the images of the
maps of A. (Note: given k and pu, there may be more than one map x — u, and so
more than one transition map a,’j.) In other words, there is a unique map S such
that all of the following diagrams commute:

O‘Z ap li
M, — M, — LHMA

e | s
p-tryp ' .p

To indicate this context, the functor A — M, is often called a direct system.

As usual, universality implies that, once equipped with its insertions «,, the limit
lim M), is determined up to unique isomorphism, assuming it exists. In practice,
there is usually a canonical choice for hﬂM A, given by a construction. In any ca:
let us use lim M) to denote a particular choice. V

We say that C has direct limits indexed by A if, for gver \ﬁ@
from A to €, the direct limit h_H)lM ) exists. We say tha &é limits if 1t

has direct limits indexed by every small cate e
Given a functor F': € — (t" note t A MA som A to C yields a

functor A — F(M)) from rmore Q orresponding two
direct limits exist, t a duce a canonical map
¢: hm F (6.6.1)

P (@Mways an is % ay F preserves dlrect limits. At times, given

M)y, we constru ) by showing F' (hgl M) has the requisite UMP.
Assume C has dlrect limits indexed by A. Then, given a natural transformation
from A — M, to A — N, universality yields unique commutative diagrams

MH — MMA

L

NH — hﬂN,\

To put it in another way, form the functor category C*: its objects are the
functors A — M), from A to C; its maps are the natural transformations (they form
a set as A is one). Then taking direct limits yields a functor lim from C* to €.

In fact, it is just a restatement of the definitions that the “direct limit” functor
ligl is the left adjoint of the diagonal functor

A: e —CMh
By definition, A sends each object M to the constant functor AM, which has the
same value M at every A € A and has the same value 1, at every map of A; further,

A carries a map y: M — N to the natural transformation Ay: AM — AN, which
has the same value v at every A € A.

(6.7) (Coproducts). — Let C be a category, A a set, and M), an object of € for
each A € A. The coproduct [],., M., or simply [[ My, is defined as the object
of € universal among objects P equipped with a map 8,,: M, — P for each u € A.
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PROOF: The assertions follow directly from (7.7). Specifically, (1) holds, since
lim M) is a quotient of the disjoint union | | M. Further, (2) holds owing to the
definition of the equivalence relation involved. Finally, (3) is the special case of (2)
where mq := m) and my = 0. O

EXERCISE (7.9). — Let R := @RA be a filtered direct limit of rings.
(1) Prove that R = 0 if and only if Ry = 0 for some .
(2) Assune that each R is a domain. Prove that R is a domain.
(3) Assume that each Rj is a field. Prove that R is a field.

EXERCISE (7.10). — Let M := lim M be a filtered direct limit of modules, with
transition maps ozf;: My — M, and insertions ay: My — M. For each A, let
Ny C M), be a submodule, and let N C M be a submodule. Prove that Ny = a;lN
for all X if and only if (a) Ny = (af‘t)’lNu for all af; and (b) JaxNy = N.

DEFINITION (7.11). — Let R be a ring. We say an algebra R’ is finitely presented
if R ~ R[X1,...,X,]/a for some variables X; and finitely generated ideal a.

PROPOSITION (7.12). — Let A be a filtered category, R a ring, C either (( R-mod)
or ((R-alg)), A — M) a functor from A to C. Given N € C, form the m (6@

6 lim Hom(N, M) — Hom(N, gM\e

If N is finitely generated, then 0 is mjectz‘es

The following conditions are equi

)

)

(a) N is finitely present g‘\
(b) 9 18 categ
(c)

bijectiv ories all rs A= My,
wef ] dw‘ected ﬁi s M.
ven M)\ — M, set ﬁ)‘ := Hom(N, « ) Then

P‘he B, are the tr s of h Hom(N My). Denote by ay and B the
insertions of li lim M and lngom(N My).
For (1), let ny,...,n, generate N. Given ¢ and ¢’ in hmHom(N M) with
0(p) = 0(¢'), note that (7.8)(1) yields A and py: N — M) and pand @), 0 N — M,
with Bx(px) = ¢ and B.(¢),) = ¢'. Then 0(p) = axpx and 0(¢') = auyp), by
construction of 6. Hence ayp) = O‘u@;u So axea(n;) = aMgoL(ni) for all i. So
(7.8)(2) yields A; and o and o such that ) pa(n;) = aﬁ\ficp:‘(m) for all i.

(1
(2

Let’s prove, by induction on i, that there are v; and ) and aly such that
oy ox(nj) = at (n;) for 1 < j < 4. Indeed, given v;_1 and o) and a¥ by

Vi_1 ()
(7.1)(1), there are p; and a,: " and aPi' By (7.1)(2), there are v; and api such that

pi Vi1 X\ P A A pi Vi1 M Pi A . i A A
adiaptap = lapla/\_ and afiap "ol = afiagiak . Set ay =« Dlagiay,

—1
and ol = a"la;\ o . Then ap pa(n;) = ak (n;) for 1<j<i as de51red

Set v :=v,. Then al,gak(nl) = alyl, (n;) for all i. Hence ajpy = atiy!,. But

= Br(er) = BuB(0x) = Bulagpn).
Similarly, ¢’ = B, (afp),). Hence ¢ = ¢'. Thus ¢ is injective. Notice that this proof
works equally well for ((R-mod)) and ((R-alg)). Thus (1) holds.

For (2), let’s treat the case € = ((R-mod)) first. Assume (a). Say N ~ F/N’
where F := R" and N’ is finitely generated, say by nf,...,n.. Let n; be the image
in N of the ith standard basis vector e; of F. Then there are homogeneous linear
polynomials f; with f;(e1,...,e.) = n; for all j. So fj(n1,...,n,) =0.
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objects are the 3-term exact sequences, and its maps are the commutative diagrams
L—M — N

|1

L' — M — N
Then, for any functor X\ — (L LN My 2 N)) from A to C, the induced sequence
liﬂLk i @MA z, ligNA s exact.

ProOF: Abusing notation, in all three cases denote by af the transition maps
and by «) the insertions. Then given ¢ € ligL,\, there is £y € L) with ayly = ¢
by (7.8)(1). By hypothesis, yA8x¢x = 0; so v8¢ = 0. In sum, we have this figure:

my € My Wlth oz,\m)\ m. Now, a,\'y,\m,\ =0 by co y (7.8)(3
there is a with auy,\m,\ =0. So *yua m,\ = 1v1ty Hence there i 1s
£, €L, Wlth Bl = =a) LN by exact 7 to ge

In sum ‘@Wls-sggr;@“ uﬂu \ ab&

PreV™ pag®, \’i?\ A

L= mF— 0 7
Ao A hSS
° NS 5 ® hg
Thus Ker(y) C Im(8). So Ker(y) = Im(j3) as asserted. O

Thus Im(8) C Ker(7). Q
For the opposite inclusion, take m & I%mM A with ym = \L (7@3 there is

EXERCISE (7.15). — Let R := lim Ry be a filtered direct limit of rings, ay C Ry
an ideal for each . Assume o nax C ay for each transition map a . Set a:=limay,.
If each ay is prime, show a is prlme If each a) is maximal, show a is maximal.

EXERCISE (7.16). — Let M := lim M) be a filtered direct limit of modules, with
transition maps afl: My — M, and insertions a: My — M. Let Ny C M)y be a
be a submodule for all A\. Assume a;\LNA C N, for all 04//). Prove ligNA = JaNx.

EXERCISE (7.17). — Let R := lim R be a filtered direct limit of rings. Prove that
li_I)nnil(R,\) = nil(R).
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EXERCISE (7.18). — Let R := lim Ry be a filtered direct limit of rings. Assume
each ring R) is local, say with maximal ideal my, and assume each transition map
at: Ry — R, is local. Set m := limm,. Prove that R is local with maximal ideal
m and that each insertion ay: Ry — R is local.

(7.19) (Hom and direct limits again). — Let A a filtered category, R a ring, N a
module, and A — M) a functor from A to ((R-mod)). Here is an alternative proof
that the map 0(N) of (6.6.1) is injective if N is finitely generated and bijective if
N is finitely presented.

If N := R, then 6(N) is bijective by (4.3). Assume N is finitely generated, and
take a presentation R®* — R™ — N — 0 with ¥ finite if N is finitely presented.
It induces the following commutative diagram:

0 — lim Hom(N, M) — lim Hom(R", My) — liﬂHom(R@Z, M)
o | or") | = o) |
0 — Hom(N, lim M) — Hom(R", lim M) — Hom(R®*, lim M)

The rows are exact owing to (5.18), the left exactness of Hom, and to (7. 14) t e
exactness of filtered direct limits. Now, Hom preserves finite direct sums

and direct limit does so by (6.15) and (6.7); hence, 0(R") ig bi ectlc &(
is bijective if ¥ is finite. A diagram chase yields the azs ‘&\e

EXERCISE (7.20). — Let A and A’ e sﬂ‘r
Assume A’ is filtered. Assume at is

) given A € A, tgr'@herel — CX f c@xh%@ o
P(é\ﬂ@xmu

es, C A’ — A a functor.

nctor fr to e direct limit exists. Show that
‘oA Mc,v =lim My;
more precisely, show that the right side has the UMP characterizing the left.

EXERCISE (7.21). — Show that every R-module M is the filtered direct limit over
a directed set of finitely presented modules.
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(8.5) (Bifunctoriality). — Let R be aring, a: M — M’ and «: N — N’ module
homomorphisms. Then there is a canonical commutative diagram:

OLXQ

Mx N —— M'x N’

s [

MeN 22 v N

Indeed, 8" o (a x &) is clearly bilinear; so the UMP (8.3) yields a®«’. Thus e®@ N
and M ®e are commuting linear functors — that is, linear on maps, compare (9.2).

PROPOSITION (8.6). — Let R be a ring, M and N modules.
(1) Then the switch map (m,n) — (n,m) induces an isomorphism

M®r N =NQ®gr M. (commutative law)
(2) Then multiplication of R on M induces an isomorphism
R®r M =M. (unitary law)

PROOF: The switch map induces an isomorphism R®M*N) _~y RENXM) " and
it preserves the elements of (8.2.1). Thus (1) holds.

Define 8: R x M — M by B(x,m) := xm. Clearly S is bilinear. @Chu
has the requisite UMP. Given a bilinear map a: R x M —> ¢
v(m) := a(1,m). Then ~ is linear as « is blhnear

a(z,m) = za(l,m) ﬂ 'yﬁ
Further, + is unique Q t ve \THus b ha: 2 holds O
EXERCISE % e a d 1‘7 @) deal. Set K := Frac(R).

howg t
“\,Bzmodules % R/ be rings. An abelian group N is an (R, R’')-
h an R-m

blmodule if it is odule and an R’-module and if z(z'n) = 2/(zn)
forallz € R, all 2’ € R, and all n € N. At times, we think of NV as a left R-
module, with multiplication zn, and as a right R’-module, with multiplication nz’.
Then the compatibility condition becomes the associative law: x(nz') = (xn)z’. A
(R, R’')-homomorphism of bimodules is a map that is both R-linear and R’-linear.

Let M be an R-module, and let N be an (R, R')-bimodule. Then M ®p N
is an (R, R')-bimodule with R-structure as usual and with R’-structure defined
by '(m @n) := m® (¢'n) for all 2’ € R, all m € M, and all n € N. The
latter multiplication is well defined and the two multiplications commute because
of bifunctoriality (8.5) with « := p, and o’ := p,.

For instance, suppose R’ is an R-algebra. Then R’ is an (R, R')-bimodule. So
M ®pgr R’ is an R’-module. It is said to be obtained by extension of scalars.

In full generality, it is easy to check that Hompg(M, N) is an (R, R’)-bimodule
under valuewise multiplication by elements of R’. Further, given an R’-module
P, it is easy to check that Hompg/ (N, P) is an (R, R')-bimodule under sourcewise
multiplication by elements of R.

EXERCISE (8.9). — Let R be a ring, R’ an R-algebra, M, N two R’-modules.
Show there is a canonical R-linear map 7: M g N — M Qg N.

Let K C M ®r N denote the R-submodule generated by all the differences
(@'m)@n —m® (2'n) for ' € R and m € M and n € N. Show K is equal to
Ker(7), and 7 is surjective. Show 7 is an isomorphism if R’ is a quotient of R.

2 Pby
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THEOREM (8.10). — Let R and R’ be rings, M an R-module, P an R'-module,
N an (R, R')-bimodule. Then there are two canonical (R, R')-isomorphisms:

M®@p (N ®p P)=(M®rN)®p P, (associative law)
Homp/ (M ®p N, P) = Homg (M, Hompg/ (N, P)). (adjoint associativity)

Proor: Note that M @p (N @p P) and (M @ g N) Qg P are (R, R")-bimodules.
For each (R, R')-bimodule @, call a map 7: M x N x P — @ trilinear if it is
R-bilinear in M x N and R’-bilinear in N x P. Denote the set of all these 7 by
Tril(M, N, P; Q). Tt is, clearly, an (R, R')-bimodule.

A trilinear map 7 yields an R-bilinear map M X (N ® g P) — @, whence a map
M ®g (N ®p P) — Q, which is both R-linear and R’-linear, and vice versa. Thus
TI‘ﬂ(R,R/)(M, N,P, Q) = HOIH(M QR (N QR P), Q)

Similarly, there is a canonical isomorphism of (R, R’)-bimodules

Tril(R,R/)(M,N P Q) = HOID((M ®R N) ®R/ P Q)

Hence each of M ®g (N @r P) and (M ®pr N) Qg P is the universal target ofya
trilinear map with source M x N x P. Thus they are equal, as asserted
To establish the isomorphism of adjoint assomatlwty, %e a m .

a: HomR/(M ®RN P) —>HomR

Let’s check « is well deﬁne WQ i % @e given 2’ € R/,
&@\, W Further % r, because given x € R,
P ? @@ dso (a(y)(zm))(n) = (a(y)(m))(zn).

Thus a(y) € HomR M, Homp/ (N, P . Clearly, « is an (R, R")-homomorphism.
To obtam an inverse to «, given 7] € Homp (M, Hompg/ (N, P)), define a map
(: M x N — P by ((m,n) = (n(m))(n). Clearly, ¢ is Z-bilinear, so ¢ induces a
Z-linear map §: M ®z N — P. Given z € R, clearly (n(zm))(n) = (n(m))(zn); so
0((xm) ® n) = 6(m @ (zn)). Hence, § induces a Z-linear map 3(n): M g N — P
owing to (8.9) with Z for R and with R for R’. Clearly, 8(n) is R'-linear as n(m)
is so. Finally, it is easy to verify that a(8(n)) = n and B(«a(y)) = v, as desired. O

COROLLARY (8.11). — Let R be a ring, and R an algebra. First, let M be an
R-module, and P an R'-module. Then there are two canonical R'-isomorphisms:

(M ®r R)®p P=M®pg P, (cancellation law)
Homp (M ®g R, P) = Homg(M, P). (left adjoint)
Instead, let M be an R'-module, and P an R-module. Then there is a canonical
R'-isomorphism:
Hompg(M, P) = Homg (M, Homg(R', P)). (right adjoint)
In other words, e @ R’ is the left adjoint of restriction of scalars from R’ to R,
and Homp(R', e) is its right adjoint.

PRrROOF: The cancellation law results from the associative and unitary laws; the
adjoint isomorphisms, from adjoint associativity, (4.3) and the unitary law. O
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EXERCISE (9.18). — Prove that an R-algebra R’ is faithfully flat if and only if the
structure map ¢: R — R’ is injective and the quotient R'/¢R is flat over R.

PROPOSITION (9.19). — A filtered direct limit of flat modules @MA 18 flat.

ProoF: Let 8: N’ — N be injective. Then M), ® 3 is injective for each X since
M, is flat. So hg(M A ® ) is injective by the exactness of filtered direct limits,
(7.14). So (lim M) ® 3 is injective by (8.13). Thus lim M), is flat. O

PROPOSITION (9.20). — Let R and R’ be rings, M an R-module, N an (R, R')-
bimodule, and P an R'-module. Then there is a canonical homomorphism

0: HOIIlR(M, N) Rpr P — HOIIIR(M, N Qg P) (9201)

Assume P is flat. If M is finitely generated, then 6 is injective; if M is finitely
presented, then 0 is an isomorphism.

PROOF: The map 6 exists by Watts’s Theorem, (8.18), with R’ for R, applied
to Homp (M, N ®p o). Explicitly, 0(¢ ® p)(m) = ¢(m) @ p.

Clearly, 0 is bijective if M = R. So 0 is bijective if M = R" for any n,
Homp(e, Q) preserves finite direct sums for any @ by (4.15). ¥

Assume that M is finitely generated. Then from (5.20), we obtal
R®® - R™ — M — 0, with ¥ finite if P is finitely prese \@l
yields this commutatlve diagram: &g’ ﬁ

0 — HomR(M N)®p P — Ho.‘w@ = HorngBE ,N)®@p P
N%x Q-» Ho N@@ 2

ural it

0 —, Ho

Qcact owing to, @ lﬁtness of Hom and to the flatness of P. The
P hand vertlcal@ tive if ¥ is finite. The assertion follows. O
EXERCISE (9.21). — Let R be a ring, R’ an algebra, M and N modules. Show

that there is a canonical map

o: Homgr(M, N)®r R' — Homgr (M @ R', N ®r R').

Assume R’ is flat over R. Show that if M is finitely generated, then o is injective,
and that if M is finitely presented, then o is an isomorphism.

DEFINITION (9.22). — Let R be a ring, M a module. Let Aj; be the category
whose objects are the pairs (R™, «) where a: R™ — M is a homomorphism, and
whose maps (R™, «) — (R", ) are the homomorphisms ¢: R™ — R™ with Sy = a.

PROPOSITION (9.23). — Let R be a ring, M a module, and (R™,«) — R™ the
forgetful functor from Ay to ((R-mod)). Then M = hg(Rm,a)eAM R™.

Proor: By the UMP, the a: R™ — M induce a map (: li_nng — M. Let’s
show ( is bijective. First, ( is surjective, because each x € M is in the image of
(R, ay) where o, (r) = ra.

For injectivity, let y € Ker(¢). By construction, ®(Rm,a) R™ — liAlRm is surjec-
tive; see the proof of (6.10). So y is in the image of some finite sum @(Rmi Loy BT
Set m := > m,;. Then @ R™ = R™. Set o := > ;. Then y is the image of some
y’" € R™ under the insertion ¢,,: R™ — lim R™. But y € Ker(¢). So a(y’) = 0.

Let 6,¢: R = R™ be the homomorphisms with 6(1) := 3 and (1) := 0. They



13. Support

The spectrum of a ring is the following topological space: its points are the
prime ideals, and each closed set consists of those primes containing a given ideal.
The support of a module is the following subset: its points are the primes at
which the localized module is nonzero. We relate the support to the closed set of
the annihilator. We prove that a sequence is exact if and only if it is exact after
localizing at every maximal ideal. We end this section by proving that the following
conditions on a module ar equivalent: it is finitely generated and projective; it is
finitely presented and flat; and it is locally free of finite rank.

(13.1) (Spectrum of a ring). — Let R be a ring. Its set of prime ideals is denoted
Spec(R), and is called the (prime) spectrum of R.

Let a be an ideal. Let V(a) denote the subset of Spec(R) consisting of those
primes that contain a. We call V(a) the variety of a.

Let b be a second ideal. Obviously, if a C b, then V(b) C V(a). Conversel “
V(b) C V(a), then a C Vb, owing to the Scheinnullstellensatz (3.2 6{
V(a) = V(b) if and only if f \f Further, (2. 2) ylelds 6

V(a

V(an
A prime ideal p contains the i als Kt@rary @on if and only if p
contains their sum % b

lg\,\@ (), and p%ﬁThus the subsets V(a) of Spec(R) are
P losed sets of called the Zariski topology.
Given an eleme , we call the open set
= Spec(R) = V((f))
a principal open set. These sets form a basis for the topology of Spec(R); indeed,
given any prime p 2 a, there is an f € a — p, and so p € D(f) C Spec(R) — V(a).
Further, f,g ¢ p if and ounly if fg ¢ p, for any f, g € R and prime p; in other words,

D(f) N D(g) = D(f9). (13.1.1)
A ring map ¢: R — R’ induces a set map
Spec(p): Spec(R') — Spec(R) by Spec(p)(p’) := ¢ (p'). (13.1.2)

Notice = 1(p’) D a if and only if p’ D aR’; so Spec(p) ™t V(a) = V(aR'). Hence
Spec(yp) is continuous. Thus Spec(e) is a contravariant functor from ((Rings)) to
((Top spaces)).

For example, the quotient map R — R/a induces a topological embedding

Spec(R/a) < Spec(R), (13.1.3)

whose image is V(a), owing to (1.9) and (2.8). Furthermore, the localization map
R — Ry induces a topological embedding

Spec(Ry) — Spec(R), (13.1.4)
whose image is D(f), owing to (11.20).

7
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EXERCISE (13.13). — Let ¢: R — R’ be a ring map, and b an ideal of R'. Set
©* := Spec(). Show (1) that the closure p*(V (b)) in Spec(R) is equal to V(¢ ~1b)
and (2) that ¢*(Spec(R’)) is dense in Spec(R) if and only if Ker(y) C nil(R).

EXERCISE (13.14). — Let R be a ring, R’ a flat algebra with structure map .
Show that R’ is faithfully flat if and only if Spec(y) is surjective.

EXERCISE (13.15). — Let ¢: R — R’ be a flat map of rings, q a prime of R’, and
p = "'(q). Show that the induced map Spec(Rj) — Spec(R,,) is surjective.

EXERCISE (13.16). — Let R be a ring. Given f € R, set Sy := {f" | n > 0}, and
let Sy denote its saturation; see (3.17). Given f, g € R, show that the following
conditions are equivalent:

(1) D(g) € D(f). (2) V({g) D V) (3) V{g) € V()
(4) Sy C S, 5) g € V/{F). (6) €5,

(7) there is a unique R algebra map gpf Sf 'R S 'R.

(8) there is an R-algebra map Ry — R

Show that, if these conditions hold, then the map in (8) is equal to <pg \‘)
e ned

EXERCISE (13.17). — Let R be aring. (1) Show that D(f
contravariant functor from the category of pr1nc1pal o) 8. m

alg)). (2) Given p € Spec(R), show li
EXERCISE (13. 18) — “}ye 18 cal e if it’s nonempty
and if every pair of e subset ng. Set X := Spec(R)

nly if n is prime.

and n at X is 1rr%
P f@% 3. 19 topological space, Y an irreducible subspace.
)

Show that th! of Y is also irreducible.
) Show that Y S contamed in a maximal irreducible subspace.
( ) Show that the maximal irreducible subspaces of X are closed, and cover X.
They are called its irreducible components. What are they if X is Hausdorff?
(4) Let R be aring, and take X := Spec(R). Show that its irreducible components
are the closed sets V(p) where p is a minimal prime.

usions to

PROPOSITION (13.20). — Let R be a ring, X := Spec(R). Then X is quasi-
compact: if X =Jyop Ux with Uy open, then X = J;_, Uy, for some \; € A.

PRrOOF: Say Uy = X—V(a)\). As X = U)\EA U)\, then ) = mV(Cl)\) = V(Z Cl)\).
So > ay lies in no prime ideal. Hence there are A1,..., A, € A and f), € ay, with
1= Zf)\l So R = Za)\i. So [Z) = ﬂV(a,\l) = V(Za,\l) Thus X = UU)\I O

EXERCISE (13.21). — Let R be a ring, X := Spec(R), and U an open subset.
Show U is quasi-compact if and only if X —U = V(a) where a is finitely generated.

EXERCISE (13.22). — Let R be a ring, M a module, m € M. Set X := Spec(R).
Assume X = JD(f)) for some fy, and m/1 =0 in My, for all A. Show m = 0.

EXERCISE (13.23). — Let R be a ring; set X := Spec(R). Prove that the four
following conditions are equivalent:

(1) R/nil(R) is absolutely flat.

(2) X is Hausdorff.
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M,y,. Thus (13.44) yields (1).

Assume M is locally finitely presented. Then M is finitely generated by (1). So
there is a surjection R¥ — M. Let K be its kernel. Then K is locally finitely
generated owing to (5.26). Hence K too is finitely generated by (1). So there is a
surjection R — K. It yields the desired finite presentation R* — R*¥ — M — 0.
Thus (2) holds. O

THEOREM (13.51). — These conditions on an R-module P are equivalent:

(1) P is finitely generated and projective.

(2) P is finitely presented and flat.

(3) P is finitely presented, and Py, is free over Ry, at each mazimal ideal m.

(4) P is locally free of finite rank.

(5) P is finitely generated, and for each p € Spec(R), there are f and n such

that p € D(f) and Py is free of rank n over Ry at each q € D(f).

ProOF: Condition (1) implies (2) by (10.20).

Let m be a maximal ideal. Then Ry, is local by (11.22). If P is finitely pre-
sented, then Py, is finitely presented, because localization preserves direct sums agd
cokernels by (12.11). k

Assume (2). Then P, is flat by (13.46), so free by (10 20). Th

Assume (3). Fix a surjective map a: M — N. Then « Jﬁs surjectlve

So Hom(Py, am): Hom(Py, My) — Hom(P, ] c ve by (5.23) and
(5.22). But Hom(Py, am Hom( " as

finitely presented.
Further, m is arbitrary. Henc«im% surjecti %@3) Therefore, P
is projective by (5. ZXQ hblds -&x ?
Agauha n any pr1 imal ideal m containing it. By
‘ ree its ra ' 18 ﬁmtely generated. By (12.24)(2),
P (lé fe R - @eﬁ"ee of finite rank over Ry. Thus (4) holds.

Assume ( lly finitely presented. So P is finitely presented by
(13.50)(2 ) Further given p € Spec(R), there are f € R —p and n such that Py is
free of rank n over Ry. Given q € D(f) let S be the image of R —q in R;. Then
(12.5) yields Py = S~!(Py). Hence P, is free of rank n over Rq. Thus (5) holds.
Further, (3) results from taking p :=m and q := m.

Finally, assume (5), and let’s prove (4). Given p € Spec(R), let f and n be
provided by (5). Take a free basis p1/f*1,...,p,/f*" of P, over R,. The p; define
amap a: R" — P, and ay,: Ry — P, is bijective, in particular, surjective.

As P is finitely generated, (12.24)(1) provides g € R—p such that ay: Ry — P,
is surjective. It follows that aq: Ry — Py is surjective for every q € D(g). If also
q € D(f), then by hypothesis Py ~ R}. So aq is bijective by (10.4).

Set h := fg. Clearly, D(f) N D(g) = D(h). By (13.1), D(h) = Spec(Ry).
Clearly, aq = (o) (qr,,) for all g € D(h). Hence ay,: R} — P, is bijective owing to
(13.43) with Ry for R. Thus (4) holds. O

EXERCISE (13.52). — Given n, prove an R-module P is locally free of rank n if
and only if P is finitely generated and P, ~ R} holds at each maximal ideal m.

EXERCISE (13.53). — Let A be a semilocal ring, P a locally free module of rank
n. Show that P is free of rank n.

EXERCISE (13.54). — Let R be aring, M a finitely presented module, n > 0. Show
that M is locally free of rank n if and only if F,,_;(M) = (0) and F,,(M) = R.
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EXERCISE (14.14). — Let A be a reduced local ring with residue field k and finite
set ¥ of minimal primes. For each p € ¥, set K (p) := Frac(A/p). Let P be a finitely
generated module. Show that P is free of rank r if and only if dimy(P ®4 k) =7
and dimg ) (P ®4 K(p)) = r for each p € X.

EXERCISE (14.15). — Let A be a reduced local ring with residue field k¥ and a
finite set of minimal primes. Let P be a finitely generated module, B an A-algebra
with Spec(B) — Spec(A) surjective. Show that P is a free A-module of rank r if
and only if P ® B is a free B-module of rank r.

(14.16) (Arbitrary normal rings). — An arbitrary ring R is said to be normal
if R, is a normal domain for every prime p. If R is a domain, then this definition
recovers that in (10.30), owing to (11.32).

EXERCISE (14.17). — Let R be a ring, p;...,p, all its minimal primes, and K
the total quotient ring. Prove that these three conditions are equivalent:

(1) R is normal.
(2) R is reduced and integrally closed in K.

(3) R is a finite product of normal domains R;. K
Assume the conditions hold. Prove the R; are equal to the R/p; inr‘(m
L)
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Finally, py(M, n)—p(F*M, n) is a polynomial with degree at most d—1 and positive
leading coefficient; also, d and e(1) are the same for every stable q-filtration.

PRrROOF: The proof of (20.13) shows that G* R’ and G* M satisfy the hypotheses
of (20.8). So (20.8.1) and (20.13.1) yield (20.14.1). In turn, (20.13.1) yields
(20.14.2) by the argument in the second paragraph of the proof of (20.8).

Finally, as F'*M is a stable g-filtration, there is an m such that

F"M > q"M D> q"F™M = F"™™M
for all n > 0. Dividing into M and extracting lengths, we get
((MJF™M) < £(M/q" M) < £(M/F"t™M).
Therefore, (20.14.2) yields
p(F*M, n) < pg(M, n) <p(F*M,n+m) forn> 0.

The two extremes are polynomials in n with the same degree d and the same leading
coefficient ¢ where ¢ := ¢(1)/d!. Dividing by n¢ and letting n — oo, we conclude
that the polynomial pq(M, n) also has degree d and leading coefficient c.

Thus the degree and leading coefficient are the same for every stable g-filtr, ¥
Also pq(M, n)—p(F*M, n) has degree at most d—1 and positive lea u

owing to cancellation of the two leading terms and to t ﬁs

EXERCISE (20.15). — Let R be a Noethezi 1 eal and M a finitely

generated module. Assume ¢(M/gM)
m n) =degp

(20. 1\) W -Ss — Let % 1t%ng, q an ideal. The sum
P(e ‘ Kwnhﬂz() {qn ifn <0,

ifn>0

is canonically an R—algebra, known as the extended Rees Algebra of g.
Let M be a module with a g-filtration F*M. Then the sum

R(F*M) =P, e, F"M
is canonically an R(q)-module, known as the Rees Module of F*M.

LEMMA (20.17). — Let R be a Noetherian ring, q an ideal, M a finitely generated
module with a q-filtration F*M. Then R(q) is algebra finite over R. Also, F*M s
stable if and only if R(F*M) is module finite over R(q) and |JF"M = M.

PrOOF: As R is Noetherian, q is finitely generated, say by z1,...,x,. View the
x; as in Ry(q) and 1 € R as in R_1(q). These r + 1 elements generate R(q) over R.

Suppose that F*M is stable: say F*M = M and q"F*MF"™ M for n > 0.
Then |JF"M = M. Further, R(F*M) is generated by F¥M, ..., F*M over R(q).
But R is Noetherian and M is finitely generated over R; hence, every F"M is
finitely generated over R. Thus R(F*M) is a finitely generated R(q)-module.

Conversely, suppose that R(F*M) is generated over R(q) by mq,...,ms. Say
m; = Z?:M m;; with m;; € F/M for some uniform p < v. Then given n, any
m € F"M can be written as m = > fi;m;; with f;; € R,,—;(q). Hence if n < g,
then F"M C F*M. Suppose | F"M = M. Then FF*¥M = M. But if j < v < n,
then fi; € ¢" 7 =q"Vg”" 7. Thus q"VF*M = F"M. Thus F*M is stable. 0
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LEMMA (20.18) (Artin—Rees). — Let R be a Noetherian ring, M a finitely gener-
ated module, N a submodule, q an ideal, F*M a stable q-filtration. Set

F'"N:=NNOF"M forn€Z.
Then the F™N form a stable q-filtration F*N.

PROOF: By (20.17), the extended Rees Algebra R(q) is finitely generated over
R, so Noetherian by the Hilbert Basis Theorem (16.12). By (20.17), the module
R(F*M) is finitely generated over R(q), so Noetherian by (16.19). Clearly, F'*N
is a g-filtration; hence, R(F*N) is a submodule of R(F*M), so finitely generated.
But |JF"M = M, so |JF"N = N. Thus F*N is stable by (20.17). d

EXERCISE (20.19). — Derive the Krull Intersection Theorem, (18.29), from the
Artin-Rees Lemma, (20.18).

PROPOSITION (20.20). — Let R be a Noetherian ring, q an ideal, and
0—->M —-M-—M"—0

an exact sequence of finitely generated modules. Then M/qM has finite length,
and only if M'/qM' and M" /qM" do. If so, then the polynomzal K

pq(M/,n) pq(M Tl)+pq (M",n
has degree at most degpq(M',n) — 1 and has positiv \aﬂ'[czent also then
deg pq(M,n) max{ Pal M”

Proor: First off, (13.3 3. ) and @ ield
J\W g M ﬂV upp(M"”)) NV (q)
\, é (’2')% (Supp(M") N\ V(q)
pye Pﬂ /qM' U Supp(M”/qM").
Hence M/qM has*inite length if and only if M'/qM’ and M"/qM" do by (19.4).

For n € Z, set F*"M’ := M’'(q"M. Then the F""M’ form a stable g-filtration
F*M’ by the Artin—Rees Lemma. Form this canonical commutative diagram:

0— F"M' — q"M — q"M"” — 0

LD

0O—M — M — M —0
Its rows are exact. So the Nine Lemma yields this exact sequence:
0— M /F'"M" — M/q"M — M" /q"M" — 0.
Assume M /qM has finite length. Then Additivity of Length and (20.14) yield
p(F*M', n) — pq(M, n) 4+ pqg(M", n) = 0. (20.20.1)
Hence pq(M’, n) — pq(M, n) +pg(M", n) is equal to pq(M’', n) — p(F*M’, n). But
by (20.14) again, the latter is a polynomial with degree at most deg pq(M’, n) —1
and positive leading coefficient.
Finally, deg pq(M,n) = max{degp(M,,n), degpq(M",n)} owing to (20.20.1),
as the leading coefficients of p(M,,n) and pq(M",n) are both positive, so cannot
cancel. But degp(M],n) = degpq(M’,n) by (20.14), completing the proof. a
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THEOREM (20.27). — Let R be a Noetherian graded ring, M a finitely generated
graded module, N a homogeneous submodule. Then all the associated primes of
M/N are homogeneous, and N admits an irredundant primary decomposition in
which all the primary submodules are homogeneous.

PROOF: Let N = (| Q; be any primary decomposition; one exists by (18.21).
Let Q@ C Q; be the submodule generated by the homogeneous elements of Q;.
Trivially, N1Q; € NQ; = N C (1Qj. Further, each Q7 is clearly homogeneous,
and is primary by (20.26). Thus N = (Q; is a primary decomposition into
homogeneous primary submodules. And, owing to (18.19), it is irredundant if
N =[N Qj is, as both decompositions have minimal length. Finally, M/ Q5 is graded
by (20.21); so each associated prime is homogeneous by (18.20) and (20.25). O

(20.28) (Graded Domains). — Let R = @, ~, Rn be a graded domain, and set
K := Frac(R). We call z € K homogeneous of degree n € Z if » = x/y with
r € Ry, and y € R,,_p,. Clearly, n is well defined.
Let K, be the set of all such z, plus 0. Then K,,K, C K,,+n. Clearly, the
canonical map P, ., K, — K is injective. Thus P, K» is a graded subring
K. Further, Ky is a field. QK
The n with K,, # 0 form a subgroup of Z. So by renumxé

K; # 0. Fix any nonzero z € K;. Clearly, x is transcen
then z/z" € Ky. Hence R C Ko[z]. So (2.3

Any w € @ K,, can be written w €Ra mogeneoub say

w =Y (an/by) with ag, b, Qmo n&dus; set b Pz,\% > (anb/by).
THEOREM W e a N & main, K := Frac(R), and
re of R in K. en graded subring of K.

R th%
P ( F: Use t@eﬁ% .28). Since Ky[z] is a polynomial ring over a field,

0. If z € Ky,

it is normal by ence R C Ky[z]. So every y € R can be written as
y= Z:irn i, with 7; homogeneous and nonzero. Let’s show y; € R for all i.

Since y is integral over R, the R-algebra R[y] is module finite by (10.23). So
(20.28) yields a homogeneous b € R with bR[y] C R. Hence by’ € R for all j > 0.
But R is graded. Hence by) € R. Set z := 1/b. Then yJ € Rz. Since R is
Noetherian, the R-algebra R[y,| is module finite. Hence v, € R. Then y — y, € R.
Thus y; € R for all ¢ by induction on n. Thus R is graded. O

EXERCISE (20.30). — Under the conditions of (20.8), assume that R is a domain
and that its integral closure R in Frac(R) is a finitely generated R-module.

(1) Prove that there is a homogeneous f € R with Ry = R;.

(2) Prove that the Hilbert Polynomials of R and R have the same degree and
same leading coefficient.
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My — My = (mn - mn+1) + (mn+l - mn+2) + -+ (mn’—l - mn/)-
Anm € M is called a limit of (m,,) if, given ng, there’s n; with m—m,, € F" M
for all n > ny. If every Cauchy sequence has a limit, then M is called complete.
The Cauchy sequences form a module under termwise addition and scalar mul-
tiplication. The sequences with 0 as a limit form a submodule. The quotient
module is denoted M and called the (separated) completion. There is a canonical
homomorphism, which carries m € M to the class of the constant sequence (m):

ki M —M by rm:=(m).
If M is complete, but not separated, then s is surjective, but not bijective.

It is easy to check that the notions of Cauchy sequence and limit depend only on
the topology. Further, M is separated and complete with respect to the filtration
FrM = (FEM)™ where (F¥M)  is the completion of F*M arising from the inter-
sections FFM N F™M for all n. In addition, & is the universal continuous R-linear
map from M into a separated and complete, filtered R-module.

Again, let a be an ideal. Under termwise nlultlphcatlon of Cauchy sequences
is a Ting, K: R—Risa ring homomorphism, and M is an R- modul K

M+ M is a linear functor from ((R-mod)) to ((R-mod))

For example, let R’ be a ring, and R := R'[X \1eoTynom1al ring in
r variables. Set a := (X7,...,X,). Then %lan')nm of polynomials is
Cauchy if and only if, given nyg, t, ere%& at for 1, the mn agree
in degree less than n, 1§ j¥st the power s g%

For another € %C

) prnne Then a sequence
% auchy if a glven no, there s n1 such that, for all
P c@gg e dlfferenc

multiple of p™°. The completion of Z is
d the p-adl? COnblbtb of the sums Zz —0 zip* with 0 < z; < p.
2).

PROPOSITION (2 — Let R be a ring, and a an ideal. Then @ C rad(R).

PROOF: Recall from (22.1) that Ris complete in the a-adic topology Hence for
z€d wehave 1/(1—2)=1+z+a22+--- in R. Thus @ C rad(R) by (3.2). O
EXERCISE (22.3). — In the 2-adic integers, evaluate the sum 1 4+2+4+4+8+---
EXERCISE (22.4). — Let R be a ring, a an ideal, and M a module. Prove that
the following three conditions are equivalent:

(1) kK: M — M is injective; (2) ﬂa”M = (0); (3) M is separated.

Assume R is Noetherian and M finitely generated. Assume either (a) a C rad(R)
or (b) R is a domain, a is proper, and M is torsionfree. Conclude M C M.

(22.5) (Inverse limits). — Let R be a ring. Given R-modules @, equipped with
linear maps a”t: Q11 — @, for n, their inverse limit thQn is the submodule

of [T Q. of all vectors (g,,) with a*1g,,1 = ¢, for all n.
Given Q,, and "' for all n € Z, use only those for n in the present context.

Define 6: H Qn — H Qn by Q(Qn) = (Qn - O‘Z+IQn+1)' Then
limQ, = Kerf. Set 1@1 Q,, := Coker 6. (22.5.1)

Plainly, hm Qn has this UMP: given maps Bn: P — Qn with a"™ B, = B,
there’s a umque map B: P — L m @, with 7,8 = B, for all n.
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Further, the UMP yields the following natural R-linear isomorphism:
@Hom(P, Q@) = Hom(P, an)

(The notion of inverse limit is formally dual to that of direct limit.)

For example, let R’ be a ring, and R := R'[X7,..., X,] the polynomial ring in r
variables. Set m := (X1,..., X,.) and R,, := R/m"*!. Then R, is just the R-algebra
of polynomials of degree at most n, and the canonical map a?™: R,.; — R, is
just truncation. Thus @Rn is equal to the power series ring R'[[X1,. .., X,]].

For another example, take a prime integer p, and set Z, := Z/(p"™!). Then
Zy, is just the ring of sums Y " ;z;p’ with 0 < z; < p, and the canonical map
a™tl: Z,1 — Zy, is just truncation. Thus @Zn is just the ring of p-adic integers.

EXERCISE (22.6). — Let R be a ring. Given R-modules Q,, equipped with linear
maps a1 Qui1 — Qn for n >0, set o™ == atl...a™ | for m > n. We say
the @, satisfy the Mittag-Leffler Condition if the descending chain

Qn D an ' Quii D ?Qnia D DA Qm D

stabilizes; that is, aQ,, = a™T*Q,, 1 for all k > 0.

(1) Assume for each n, there is m > n with o™ = 0. Shoy lim" %@ ‘UK
(2) Assume a7 is surjective for all n. Show 1 m Xé
(3) Assume the @Q,, satisfy the Mittag- e@t et P m>n O Qms
which is the stable submodule ‘% & A @
ttag Leﬂier Qmﬁl m @, =0.

(4) Assume the Q,ﬁ
LEMq Forn >0, co we diagrams with exact rows
P ( e e’Yn Qn+ Ynt1 +1 0
m+1 a::n-f—ll

0—qQ, Q0

Then the induced sequence
0= 1m @, 2 limQ, = lim Q] (22.7.1)
is exact; further, 5 is surjective if the Q' satisfy the Mittag-Leffler Condition.

PrOOF: The given commutative diagrams yield the following one:

0 T, 1 1o, 1 17 — o0
o' 6 4
J(/ H'Vn J/ 1_[')’n9l 17
0— 1@, 12 M. 12 11¢r — o

Owing to (22.5.1), the Snake Lemma (5.13) yields the exact sequence (22.7.1)
and an injection Cokery < L Q.. Assume the Q) satisfy the Mittag-Leffler

Condition. Then L @), =0 by (22.6). So Coker”y = 0. Thus 7 is surjective. O

PROPOSITION (22.8). — Let R be a ring, M a module, F*M a filtration. Then
M = Jim(M/F"M).
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Its rows are exact. So the Snake Lemma (5.13) yields this exact sequence:
Ker G"a — Ker a1 — Ker a,, — Coker G™"av — Coker a1 — Coker av,.

Assume G°®a is injective. Then Ker G"a = 0. But M/F"M = 0 for n < 0. So
by induction Ker o, = 0 for all n. Thus @ is injective by (22.7) and (22.8).

Assume G*« is surjective, or Coker G"a = 0. So Ker a;, 11 — Ker o, is surjective.
But N/F"N =0 for n < 0. So by induction, Coker cv,, = 0 for all n. So

0 — Keray,, - M/F"M 2% N/F"N — 0
is exact. Thus @ is surjective by (22.7) and (22.8). O

LEMMA (22.27). — Let R be a ring, a an ideal, M a module, F*M an a-filtration.
Assume R is complete, M is separated, and F"M = M for n < 0. Assume G*M
is module finite over G*R. Then M is complete, and is module finite over R.

ProOOF: Take finitely many generators pu; of G®*M, and replace them by their
homogeneous components. Set n; := deg(u;). Lift p; to m; € F™ M.
Filter R a-adically. Set E := @, R[—n;]. Filter E with F"E := @ F" [g%
Then F"E = E for n < 0. Define a: E — M by sending 1 € R[—
Then aF"E C F™M for all n. Also, G*a: G*°FE —> G ]\
generate. So @ is surjective by (22.26). “g
m:

Form the following canonical com

PRVAL OmﬁEo‘ 260

P As Ris complete? Q'% is surjective by (22.1); hence, kg is surjective. Thus

K 1s surjective; that is, M is complete. As M is separated, kjs is injective by
(22.4). So ks is bijective. So « is surjective. Thus M is module finite. O

e as the p;

EXERCISE (22.28) (Nakayama’s Lemma for a complete ring). — Let R be a ring,
a an ideal, and M a module. Assume R is complete, and M separated. Show
mi,...,my € M generate assuming their images m/,...,m}, in M/aM generate.

PROPOSITION (22.29). — Let R be a ring, a an ideal, and M a module. Assume
R is complete, and M separated. Assume G*M is a Noetherian G® R-module. Then
M is a Noetherian R-module, and every submodule N is complete.

PrOOF: Let F*M denote the a-adic filtration, and F'*N the induced filtration:
F"N := NN F*"M. Then N is separated, and F"N = N for n < 0. Further,
G*N C G*M. However, G*M is Noetherian. So G®*N is module finite. Thus N is
complete and is module finite over R by (22.27). Thus M is Noetherian. O

THEOREM (22.30). — Let R be a ring, a an ideal. If R is Noetherian, so is R.

PROOF: Assume R is Noetherian. Then G®R is algebra finite over R/a by
(20.12), so Noetherian by the Hilbert Basis Theorem, (16.12). But G°R = G*R
by (22.11). Thus R is Noetherian by (22.29) with R for R and R for M. O
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EXERCISE (23.25). — Let R — R’ be a flat map of Noetherian rings, a C R an
ideal, M a finitely generated R-module, and x1,...,x, an M-sequence in a. Set
M':= M ®pr R'. Assume M'/aM’ # 0. Show z1,...,x, is an M’'-sequence in aR’'.

EXERCISE (23.26). — Let R be a Noetherian ring, a an ideal, and M a finitely
generated module with M/aM # 0. Let xi,...,x, be an M-sequence in a and
p € Supp(M/aM). Prove the following statements:

(1) z1/1,...,2,/1 is an My-sequence in a,, and

(2) depth(a, M) < depth(ay,, M,).

(23.27) (Finished Sequences). — Let R be aring, a an ideal, M a nonzero module.
We say an M-sequence in a is finished in a, if it can not be lengthened in a.
In particular, a sequence of length 0 is finished in a if there are no nonzerodivisors

on M in g; that is, a C z.div(M)
An M-sequence in a can, plainly, be lengthened until finished in a prﬂ%

depth(a, M) is finite. It is finite if R is Noetherian, M is finitely egd

M/aM # 0, as then depth(a, M) < depth(M,) for a Sp /aM) by

(23.26)(2) and depth(M,) < dim(M,) by (23& 651 ) < o0 by (21.4).
ring,

n a. Then m =

PROPOSITION (23. 28) — Let R ke a cmd M a finitely

generated module. Let a:l, L, @/ hed M -sequence
s Z

Con &’h M-sequence in a. Say m < n. Induct

1y« -y Yn DE
P ( uppose Ogg/l 1v(M). Hence n = 0 too. Now, suppose m > 1.

SetM =M/ andN M/(yl,...,yj)M for all 4,5. Set

U =" 2.div(M;) U z.div(N;).

Then U is equal to the union of all associated primes of M; for i < m and of
Nj for j < n by (17.15). And these primes are finite in number by (17.21).
Suppose a C U. Then a lies in one of the primes, say p € Ass(M;), by (3.19). But
Zit1 € a —z.div(M;) and a C p C z.div(M;), a contradiction. Thus a ¢ U.

Take z € a — U. Then z ¢ z.div(M;) for i < m and z ¢ z.div(N;) for j < n.
Now, a C z.div(M,,) by finishedness. So a C q for some q € Ass(M, ) by (17.26).
But M,, = My,—1/xmM,,—1. Moreover, xz,, and z are nonzerodivisors on M,,_;.
Also 2,2 €aCq. Soq € Ass( m— 1/sz 1) by (17.27). Hence

a CzdiviM/{z1,...,Tm-1,2)M).
Hence x1,...,2m_1,2 is finished in a. Similarly, y1,...,yn—1,2 is finished in a.
Thus we may replace both z,, and y, by z.
By (23.6)(2), we may move z to the front of both sequences. Thus we may

assume 1 = y; = z. Then M; = N;y. Further, xo,..., 2, and ys,...,y, are
finished M;-sequences in a. So by induction, m —1 =n — 1. Thus m = n. [l

EXERCISE (23.29). — Let R be a Noetherian ring, a an ideal, and M a finitely
generated module with M/aM # 0. Let x € a be a nonzerodivisor on M. Show

depth(a, M/xM) = depth(a, M) — 1.

143
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DEFINITION (23.40). — Let R be a Noetherian ring, and M a finitely generated
module. We call M Cohen—Macaulay if M, is a Cohen-Macaulay Ry-module for
every maximal ideal m € Supp(M). It is equivalent that M, be a Cohen-Macaulay
Ry-module for every p € Supp(M), because if p lies in the maximal ideal m, then
Ry is the localization of Ry, at the prime ideal pRy by (11.28), and hence R, is
Cohen—Macaulay if Ry, is by (23.39).

We say R is Cohen—Macaulay if R is a Cohen-Macaulay R-module.

PROPOSITION (23.41). — Let R be a Noetherian ring. Then R is Cohen—Macaulay
if and only if the polynomial ring R[X] is Cohen—Macaulay.

PRrROOF: First, assume R[X] is Cohen-Macaulay. Given a prime p of R, set
P := pR[X] + (X). Then P is prime in R[X] by (2.18). Now, R[X]/(X) = R
and P/(X) = p owing to (1.8); hence, Ry = R, by (11.29)(1). Further, (12.22)
yields (R[X]/(X))p = R[X]|yp/(X)R[X]yp. Hence R[X|p/(X)R[X]|p = R,. But
R[X]y is Cohen-Macaulay by (23.40), and X is plainly a nonzerodivisor; so R, is
Cohen—Macaulay by (23.30). Thus R is Cohen-Macaulay.

Conversely, assume R is Cohen-Macaulay. Given a maximal ideal 91 of R[X
m:=9MN R. Then R[X]|m = (R[X]m)m by (11.29)(1), and R[X|m = Ru] S¥
(11.30). But Ry, is Cohen-Macaulay. Thus, to show R] is C(@@ ay,
replace R by Ry, and so assume R is local with max1mq£

M(R/m)[X] is maximal, it contams a no

3 )

AS R/misa ﬁeld

Furth R by (9 at over B by (12 21). So By

we may take f monic. Lift f to a m ral f e B = R (.
Then B is a free, module— X en oo R by = dlm (B)
by (15. 12) amif ?

(9 12). S ce in m is a Byy-sequence by (23.25) as

P fm 7'5 0 > depth(R)
But depth(R d1 nd d1m ) > dim(Byy). So depth(Bgy) > dim(Bay).

But the opp051te inequality holds by (23 5). Thus Bgy is Cohen—Macaulay. But
Bop = R[X]on/{f)R[X]om by (12.22). And f is monic, so a nonzerodivisor. So
R[X]on is Cohen—Macaulay by (23.30). Thus R[X] is Cohen—Macaulay. O

DEFINITION (23.42). — A ring R is called universally catenary if every finitely
generated R-algebra is catenary.

THEOREM (23.43). — A Cohen—Macaulay ring R is universally catenary.

PRrROOF: Clearly any quotient of a catenary ring is catenary, as chains of primes
can be lifted by (1.9). So it suffices to prove that, for any n, the polynomial ring
P in n variables over R is catenary.

Notice P is Cohen—Macaulay by induction on n, as P = R if n = 0, and the
induction step holds by (23.41). Now, given nested primes q C p in P, put p in
a maximal ideal m. Then any chain of primes from q to p corresponds to a chain
from qPy, to pPy by (11.20). But P, is Cohen-Macaulay, so catenary by (23.37).
Thus the assertion holds. O

EXAMPLE (23.44). — Trivially, a field is Cohen-Macaulay. Plainly, a domain of
dimension 1 is Cohen—-Macaulay. By (23.20), a normal domain of dimension 2
is Cohen—Macaulay. Thus these rings are all universally catenary by (23.43). In
particular, we recover (15.16).
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(1) M is an invertible fractional ideal.
(2) M is an invertible abstract module.
(3) M is a projective abstract module.

PROOF: Assume (1). Then M is locally principal by (25.13). So (25.6) yields
M®M~' = MM~" by (1). But MM~' = 1. Thus (2) holds.

If (2) holds, then M is locally free of rank 1 by (25.18); so (13.51) yields (3).

Finally, assume (3). By (5.23), there’s an M’ with M @ M’ ~ R®A. Let
p: RN — M be the projection, and set ) := p(ey) where ey is the standard basis
vector. Define py: M < R®* — R to be the composition of the injection with the
projection ¢ on the Ath factor. Then given z € M, we have @y (z) = 0 for almost
all Xand x = ),y oa(x)x

Fix a nonzero y € M. For A € A, set ¢y := %ga)\(y) € Frac(R). Set N :=>" Rqy.
Given any nonzero z € M, say ¢ = a/b and y = ¢/d with a,b,c,d € R. Then
a,c € M; whence, adpx(y)pa(ac) = bepx(z). Thus zgy = x(r) € R. Hence
M-N CR. Buty=> oax(y)yxr; so 1 = yxgr. Thus M - N = R. Thus (1 )
holds.

THEOREM (25.20). — Let R be a domain. Then the following are equ leUK
(1) R is a Dedekind domain or a field. 6

(2) Ewvery nonzero ordinary ideal a is invertible. a\

(3) Every nonzero ordinary zdeal a_isgpy Xg 5

(4) Fvery nonzero ordinary id, V&@ enerat

PROOF: Assume XTQ other @‘& Vlally
If R isD W 14) @m

é\t hen a is ﬁnlt (25.10). Thus R is Noetherian. Let

P nonzer enDy hypothesis, p is invertible. So by (25.13), p

1s locally prln(;lp?ga‘ a DVR by (23.10). Hence R is Dedekind by (24.7).
Thus (1) holds. (1) and (2) are equivalent.

By (25.19), (2) and (3) are equivalent. But (2) implies that R is Noetherian by

(25.10). Thus (3) and (4) are equivalent by (16.19) and (13.51). O

THEOREM (25.21). — Let R be a Noetherian domain, but not a field. Then R is
Dedekind if and only if every torsionfree module is flat.

ProOOF: (Of course, as R is a domain, every flat module is torsionfree by (9.28).)

Assume R is Dedekind. Let M be a torsionfree module, m a maximal ideal.
Let’s see that M, is torsionfree over Ry,. Let z € Ry, be nonzero, and say z = /s
with z,s € R and s ¢ m. Then pu,: M — M is injective as M is torsionfree. So
Po: My — My is injective by the Exactness of Localization. But p, s = pizpi1ys
and iy, is invertible. So fi, /. is injective. Thus My, is torsionfree.

Since R is Dedekind, Ry, is a DVR by (24.7), so a PID by (24.1). Hence My
is flat over Ry, by (9.28). But m is arbitrary. Thus by (13.46), M is flat over R.

Conversely, assume every torsionfree module is flat. In particular, every nonzero
ordinary ideal is flat. But R is Noetherian. Thus R is Dedekind by (25.20). O

(25.22) (The Picard Group). — Let R be a ring. We denote the collection of
isomorphism classes of invertible modules by Pic(R). By (25.17), every invertible
module is finitely generated, so isomorphic to a quotient of R™ for some integer n.
Hence, Pic(R) is a set. Further, Pic(R) is, clearly, a group under tensor product



26. Arbitrary Valuation Rings

A valuation ring is a subring of a field such that the reciprocal of any element
outside the subring lies in it. Valuation rings are normal local domains. They
are maximal under domination of local rings; that is, one contains the other, and
the inclusion map is a local homomorphism. Given any domain, its normalization
is equal to the intersection of all the valuation rings containing it. Given a 1-
dimensional Noetherian domain and a finite extension of its fraction field with
a proper subring containing the domain, that subring too is 1-dimensional and
Noetherian, this is the Krull-Akizuki Theorem. So normalizing a Dedekind domain
in any finite extension of its fraction field yields another Dededind domain.

DEFINITION (26.1). — A subring V of a field K is said to be a valuation ring
of K if, whenever z € K —V, then 1/z € V.

PROPOSITION (26.2). — Let V be a valuation ring of a field K, and set
m:={1/z|z€ K-V}U{0}. K
O-
Then V is local, m is its mazimal ideal, and K is its fracti @dc
ProoOF: Clearlym =V —-V*. Let’s s w& e anonzeroa € V and
nonzero x,y € m. Suppose ax ¢ m. 1&% So a(1l V Sol/zeV.
SoreV* a contrad ctlo

Now, b ther x/y €V or
y/reV. Say yixle y/x ﬁ 1+ (y/z))x € m. Thus
i s a

m is an 1S local angqm ideal by (3.6). Finally, K is

g @ver V then 1/z € V. O
P XERCISE (26.3 be a domain. Show that V' is a valuation ring if and

only if, given any %wo ideals a and b, either a lies in b or b lies in a.

, because

EXERCISE (26.4). — Let V be a valuation ring of K, and V C W C K a subring.
Prove that W is also a valuation ring of K, that its maximal ideal p lies in V', that
V/p is a valuation ring of the field W/p, and that W = Vj,.

EXERCISE (26.5). — Prove that a valuation ring V' is normal.

LEMMA (26.6). — Let R be a domain, a an ideal, K = Frac(R), and xz € K*.
Then either 1 ¢ aR[z] or 1 ¢ aR[1/x].

PrROOF: Assume 1 € aR[z] and 1 € aR[1/z]. Then there are equations
l=ay+---+apz” and 1=by+---+b,/z" withal a;b;€a.
Assume n, m minimal and m < n. Multiply through by 1 — by and a,x™, getting
1—bg=(1—bog)ag+ -+ (1 —by)ayz™ and

(1 = bg)anz™ = apbiz™ ' + - + apbpa™ ™.
Combine the latter equations, getting
1—by=(1—=bg)ag+ -+ (1 =bg)an_12" "  + apbyx™ ' + -+ a,bpz" ™.

Simplify, getting an equation of the form 1 = ¢+ - - +¢,_12" ! with ¢; € a, which
contradicts the minimality of n. O
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(26.7) (Domination). — Let A, B be local rings, and m, n their maximal ideals.
We say B dominates A if B D A and nN A = m; in other words, the inclusion
map ¢: A — B is a local homomorphism.

PROPOSITION (26.8). — Let K be a field, A any local subring. Then A is domi-
nated by a valuation ring V of K with algebraic residue field extension.

PROOF: Let m be the maximal ideal of A. Let 8§ be the set of pairs (R, n) where
R C K is a subring containing A and where n C R is a maximal ideal with nNA =m
and with R/n an algebraic extension of A/m. Then (A, m) € 8. Order 8 as follows:
(R,n) < (R,w')ift RC R and n = n NR. Let (Ry,ny) form a totally ordered
subset. Set B :=|J Ry and 9% = (n,. Plainly 91N Ry = ny and B/M = (| Rx/n)
for all \. So any y € B/ is in Ry/ny for some A. Hence B/ is a field and is
algebraic over A/m. Thus by Zorn’s Lemma, 8 has a maximal element, say (V, ).

For any nonzero = € K, set V' := Viz] and V" := V[1/z]. By (26.6), either
1¢ MV or 1 ¢ MV, Say 1 ¢ 9MV’'. Then MV’ is proper, so it is contained in a
maximal ideal M’ of V’. Since M NV D M and V NN’ is proper, MmNV =99,
Further V’/9V is generated as a ring over V/9 by the residue 2’ of 2. Hence z'gis
algebraic over V/9; otherwise, V' /9" would be a polynomial rlng, so not 1&%
Hence (V', 9) € 8, and (V/, SDT’) (V, 9t). By maximality, V'

Thus V is a valuatlon ring of K. So V is local, and sm i % ¢ leal ideal.
Finally, (V, ) € 8; so V dominates A with a{ a d extension. O
set of

EXERCISE (26.9). — Let K be % ﬁmgs ordered by

domination. Show t}f qufﬁn ngs of K a ﬁ lements of 8.

THEOREM W et R be a K. Then the integral closure
P (/éﬁ’ e mtersectw ls n rmgs V of K containing R. Further,

with algebraic residue field extension suffice.

ocal, ther?
PROOF: Every Waluation ring V is normal by (26.5). Soif V O R, then V O R.

Thus (Ny 5z ) O R.
To prove the opposite inclusion, take any 2 € K — R. To find a valuation ring V'

with V DO Rand x ¢ V, set y := 1/z. If 1/y € R]y], then for some n,
1/y = apy” +ay" t+---4a, with a\€R.

Multiplying by 2" yields 2"t — a, 2™ —--- —ag = 0. So = € R, a contradiction.
Thus 1 ¢ yR[y]. So there is a maximal ideal m of R[y] containing y. Then
the composition R — R[y] — R[y]/m is surjective as y € m. Its kernel is m N R,
so m N R is a maximal ideal of R. By (26.8), there is a valuation ring V that
dominates R[y], with algebraic residue field extension; whence, if R is local, then
V also dominates R, and the residue field of R[y]n is equal to that of R. But y € m;
sox=1/y ¢V, as desired. O

(26.11) (Valuations). — We call an additive abelian group I" totally ordered if
" has a subset I'; that is closed under addition and satisfies 'y U {0} U—-T', =T.
Given x,y € T', write x > y if x — y € I';.. Note that either x > y or x = y or
y > x. Note that, if x >y, then x + z > y + z for any z € I.
Let V be a domain, and set K := Frac(V) and I := K> /V*. Write the group T
additively, and let v: K* — I' be the quotient map. It is a homomorphism:

v(zy) = v(x) + v(y). (26.11.1)
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(2) Let a be comaximal to both b and b’. Prove a is also comaximal to bb’.
(3) Let a, b be comaximal, and m,n > 1. Prove a™ and b" are comaximal.
(4) Let ay,...,a, be pairwise comaximal. Prove

(a) a; and ay---a, are comaximal;
(b) ey N---Na, =ag---ap;
(c) R/(ar---an) == [I(R/a).
SoLuTION: To prove (1)(a), note that always ab C anb. Conversely, a+b =R
implies z4+y = 1 with z € aand y € b. So given z € aNb, we have z = xz+yz € ab.
To prove (1)(b), form the map R — R/a x R/b that carries an element to its
pair of residues. The kernel is a N b, which is ab by (1). So we have an injection

¢: R/ab — R/a x R/b.

To show that ¢ is surjective, take any element (Z,7) in R/a x R/b. Say T and
are the residues of x and y. Since a+b = R, we can find a € a and b € b such that

a+b=y—xz. Then ¢(z+a) = (,7), as desired. Thus (1) holds.
To prove (2), note that
R=(a+b)(a+b)=(a®>+ba+ab’)+bb Ca+bb CR. u\(
To prove (3), note that (2) implies a and b™ are coma fovG 21 by
induction on n. Hence, b™ and a™ are comaxnnal o

To prove (4)(a), assume a; and as -
hypothesis, al and a, are coma;

To prove ( _ﬁx
\, 6
(ESRCISE (1. 15§ Qs

tents in Z/(p

ﬂan

al
gl

ylelds
proceed by in

mal by indu
@Eﬁ
_ = apag -

ction on n. By

1) yields

O

T given a prime number p and a k£ > 1, find the idempo-
. Second, ﬁnd the 1demp0tents in Z/(12). Third, find the number

of 1dempotents in Z/(n) where n = Hi:l p;* with p; distinct prime numbers.

SoLUTION: First, let m € Z be idempotent modulo p*. Then m(m—1) is divisible

by p*. So either m or m — 1 is divis
prime divisor. Hence 0 and 1 are the

ible by p*
only idempotents in Z/(p

k)_

, as m and m — 1 have no common

Second, since —3 + 4 = 1, the Chinese Remainder Theorem (1.14) yields

Z/(12)

= Z/(3) x Z/(4).

Hence m is idempotent modulo 12 if and only if m is idempotent modulo 3 and
modulo 4. By the previous case, we have the following possibilities:

m=0 (mod 3)
m=1 (mod 3)
m=1 (mod 3)
m=0 (mod 3)

Therefore, m =0, 1, 4, 9 (mod 12).

Third, for each i, the two numbers pj* - -

and m=0 (mod4);

and m=1 (mod 4);

and m=0 (mod 4);

and m=1 (mod 4).
P

and p;* have no common prime

divisor. Hence some linear combination is equal to 1 by the Euclidean Algorithm.
So the principal ideals they generate are comaximal. Hence by induction on N, the
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Chinese Remainder Theorem yields

N
n = [1z/e)

So m is idempotent modulo n if and only if m is idempotent modulo p™ for all i;
hence, if and only if m is 0 or 1 modulo p™¢ for all ¢ by the first case. Thus there
are 2V idempotents in Z/(n). O

EXERCISE (1.16). — Let R := R’ X R” be a product of rings, a C R an ideal.
Show a = a’ x @’ with o/ C R’ and a” C R” ideals. Show R/a = (R'/a’) x (R"/a").

SOLUTION: Set o' := {z' | (2/,0) € a} and o” := {z” | (0,2”) € a}. Clearly
o/ C R’ and a” C R” are ideals. Clearly,

aDad x0+0xa”"=d xa".
The opposite inclusion holds, because if a 5 (z/,z"), then
a>(2,2")-(1,0) = (2/,0) and a> (2',2")-(0,1) = (0,2").

Finally, the equation R/a = (R/a’) x (R/a”) is now clear from the constructio \3%

the residue class ring.

EXERCISE (1.17). — Let R be a ring, and e, €’ idempo, \@ee q also.)
(1) Set a:= (e). Show a is idempotent; thﬁ@
2) Let a be a principal 1dempotenﬂ withs fi ’1- empotent.
an, e” ;‘k
ith

(2)
(3) Set ¢ :==e+¢e —ece = e Rotent.
()

Let eq,..., &f ts Showy={e1 f idempotent.
X N an. Sho ver ‘%Zel nerated ideal is principal.

( @ N: Fo? ,;’smce a=(e). But e =e. Thus (1) holds.
P , say a A9 . But a = a. So g = zg? for some x. Set
_:z:g Then f&a;s0{f)Ca. Andg = fg. So aC (f). Thus (2) holds.

For (3), note (¢”) C (e e’y. Conversely, ee” = €2 +ee —e?e/ =etee —ec =e.
By symmetry, e’e” =¢€’. So (e, /) C (") and €/? = ee” + €’e” — ee’e” = ¢”. Thus
(4) holds.

For (4), induct on 7. Thus (3) yields (4).
For (5), recall that every element of R is idempotent. Thus (4) yields (5). O

2. Prime Ideals

EXERCISE (2.2). — Let a and b be ideals, and p a prime ideal. Prove that these
conditions are equivalent: (1) a Cpor b C p; and (2) anb C p; and (3) ab C p.

SOLUTION: Trivially, (1) implies (2). If (2) holds, then (3) follows as ab C anb.
Finally, assume a ¢ p and b ¢ p. Then there are z € a and y € b with z, y ¢ p.
Hence, since p is prime, xy ¢ p. However, zy € ab. Thus (3) implies (1). O

EXERCISE (2.4). — Given a prime number p and an integer n > 2, prove that the
residue ring Z/(p™) does not contain a domain as a subring.

SOLUTION: Any subring of Z/(p™) must contain 1, and 1 generates Z/(p™) as an
abelian group. So Z/(p™) contains no proper subrings. However, Z/(p™) is not a
domain, because in it, p- p"~! = 0 but neither p nor p”~! is 0. (]
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(1) The complement of a multiplicative subset is a prime ideal.

(2) Given two prime ideals, their intersection is prime.

(3) Given two prime ideals, their sum is prime.

(4) Given a ring map ¢: R — R/, the operation ¢~
R’ to maximal ideals of R.

(5) In (1.9), an ideal n’ C R/a is maximal if and only if x~!n’ C R is maximal.

L carries maximal ideals of

SoLuTION: (1) False. In the ring Z, consider the set S of powers of 2. The
complement T of S contains 3 and 5, but not 8; so T" is not an ideal.

(2) False. In the ring Z, consider the prime ideals (2) and (3); their intersection
(2) N (3) is equal to (6), which is not prime.

(3) False. Since 2-3 —5 =1, we have (3) + (5) = Z.

(4) False. Let ¢: Z — Q be the inclusion map. Then »~1(0) = (0).

(5) True. By(1.9), the operation b’ + k~1b’ sets up an inclusion-preserving

bijective correspondence between the ideals b’ D n’ and the ideals b D x~!n/. O

EXERCISE (2.23). — Let k be a field, P := k[Xy,...,X,] the polynomial ring,

f € P nonzero. Let d be the highest power of any variable appearing in f.
(1) Let S C k have at least d + 1 elements. Proceeding by induction on “M

ai,...,an € S with f(a,...,a,) #0.

(2) Using the algebraic closure K of k, find a maxima éxe f ¢ m.

SoruTION: Consider (1). Assume n {1@6 most d roots by [2,
(1.8), p.392]. So f(a1) ;ﬁ O for some ﬁ 6

Assume n > 1. Say,f 1hgj€k:X2 f#0. Sog; #0
forsomez ‘% aQ, . anES By n =1,
find a1 W (a1,...,a QK%.. , Ay, 0 Thus (1) holds.

1e

s K is i ds aq,.. anEKvmth filar, ... an) #0.

P ne @: P —> Q. Then Im(p) C K is the k-subalgebra generated
by the a;. It is a (2.6), p.495]. Set m = Ker(p). Then m is maximal by
(1.6.1) and (2. 17) and fl §§ m as ¢(f;) = fi(a1,...,an) # 0. Thus (2) holds. O

EXERCISE (2.26). — Prove that, in a PID, elements x and y are relatively prime
(share no prime factor) if and only if the ideals (z) and (y) are comaximal.

SOLUTION: Say (x) 4+ (y) = (d). Then d = ged(x, y), as is easy to check. The
assertion is now obvious. ]

EXERCISE (2.29). — Preserve the setup of (2.28). Let f:=apX"+---+a, bea
polynomial of positive degree n. Assume that R has infinitely many prime elements
p, or simply that there is a p such that p{ ag. Show that (f) is not maximal.

SOLUTION: Set a := (p, f). Then a 2 (f), because p is not a multiple of f. Set
k:= R/(p). Since p is irreducible, k is a domain by (2.6) and (2.8). Let [’ € k[X]
denote the image of f. By hypothesis, deg(f’) = n > 1. Hence f’ is not a unit by
(2.3) since k is a domain. Therefore, (f’) is proper. But P/a == k[X|/(f") by
(1.7) and (1.9). So a is proper. Thus (f) is not maximal. O

3. Radicals

EXERCISE (3.3). — Let R be a ring, a C rad(R) an ideal, w € R, and v’ € R/a
its residue. Prove that w € R* if and only if w’ € (R/a)*. What if a ¢ rad(R)?
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SOLUTION: First, assume S is saturated multiplicative. Take x € R — S. Then
xy ¢ S for all y € R; in other words, (z) NS = (). Then (3.12) gives a prime
p D (x) with pN.S =0. Thus R— S is a union of primes.

Conversely, assume R — S is a union of primes p. Then 1 € S as 1 lies in no p.
Take x,y € R. Then x,y € S if and only if z, y lie in no p; if and only if zy lies in no
p, as every p is prime; if and only if xy € S. Thus S is saturated multiplicative. [

EXERCISE (3.17). — Let R be a ring, and S a multiplicative subset. Define its
saturation to be the subset
S:={x € R|thereis y € R with zy € S }.

(1) Show (a) that S O S, and (b) that S is saturated multiplicative, and (c) that
any saturated multiplicative subset 1" containing S also contains S.

(2) Show that R — S is the union U of all the primes p with pN S = 0.

(3) Let a be an ideal; assume S = 1+ a; set W :=J,5,p. Show R — S =W.

(4) Given f € R, let S; denote the saturation of the multiplicative subset of all
powers of f. Given f,g € R, show S; C S, if and only if \/7 \/7

SoLuTION: Consider (1). Trivially, if z € S, then x - 1 € S. Thus ( old K

Hence 1 € S as 1 € S. Now, take z, 2’ ES Then reare
zy, 'y’ € S. But S is multlphcatlve So (zx")(yy S. ThIlb S
is multiplicative. Further, take z, 2’ € R wit gb% there is y € R with
rx'y € S. Sox,2' € 8. ThuSSlbbat

old
Finally, consider ( m 1s y € ’Z@% So xzy € T. But
T is saturated mu tl% eT. ) holds.
Cons1 1n1 —U cont, nﬁ th R U is saturated multiplicative
— U oS X‘_h C R—S. Conversely, R— S is a union

Pc 1mespby( @ ﬂS { for all p. So U D R— S. Thus (2) holds.
For ( ﬁrsttg pw1thpﬂS (). Then 1 ¢ p+a;else, 1 = p+ a with
pepandaea andsol—p=acpns. Sop—i—ahes1namax1malldealmby

(3.12). Then a C m; so m C W. But also p C m. Thus U C W.
Conversely, take p D a. Then 1+p C 1+a=S5. But pn(1+p) =0. SopnS = 0.

Thus U D W. Thus U = W. Thus (2) yields (3).

Consider (4). By (1), Sy C S, if and only if f € S,. By definition of saturation,
f €8, if and only if hf = g for some h and n. By definition of radical, hf = g"
for some h and n if and only if g € \/m Plainly, g € \/m if and only if

Vg v/ {(f). Thus (4) holds. O

EXERCISE (3.18). — Let R be a nonzero ring, S a subset. Show S is maximal
in the set & of multiplicative subsets T of R with 0 ¢ T if and only if R — S is a
minimal prime — that is, it is a prime containing no smaller prime.

SOLUTION: First, assume S is maximal in &. Then S is equal to its saturation
S, as S C S and S is multiplicative by (3.17) (1) (a), (b) and as 0 € S would imply
0=0-y € S for some y. So R— S is a union of primes p by (3.16). Fix a p. Then
(3.14) yields in p a minimal prime q. Then S C R —gq. But R—q € & by (2.1).
As S is maximal, S = R —q, or R — S =q. Thus R — S is a minimal prime.

Conversely, assume R — S is a minimal prime q. Then S € & by (2.1). Given
T € & with S C T, note R —T = |Jp with p prime by (3.16). Fix a p. Now,
ScTcCT. Soq > p. Butqisminimal. So q = p. But p is arbitrary, and
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Up=R-T. Henceq= R—T. So S =T. Hence S = T. Thus S is maximal. [

EXERCISE (3.20). — Let k be a field, 8 C k a subset of cardinality d at least 2.

(1) Let P := k[X4,...,X,] be the polynomial ring, f € P nonzero. Assume the
highest power of any X; in f is less than d. Proceeding by induction on n, show
there are ay,...,a, € 8 with f(ay,...,a,) #0.

(2) Let V be a k-vector space, and Wy, ..., W, proper subspaces. Assume r < d.
Show (J, W; # V.

(3) In (2), let W C |J; W; be a subspace. Show W C W; for some 1.

(4) Let R a k-algebra, a,aq,...,a, ideals with a C |J; a;. Show a C a; for some .

SoLuTION: For (1), first assume n = 1. Then f has degree at most d, so at most
d roots by [2, (1.8), p.392]. So there’s a; € 8§ with f(ay) # 0.

Assume n > 1. Say f = Z 9; 1' with g; € k[Xo,...,X,]. But f # 0. So
g; # 0 for some i. By 1nduct10n there are ag,...,a, € 8 with g;(as,...,a,) # 0.
So there’s a1 € 8§ with f(a1,...,a,) =3, g(az,..., an)al # 0. Thus (1) holds.

For (2), for all i, take v; € V' — W;. Form their span V' C V. Set n := dim V"’
and W/ :=W; NV’. Then n < oo, and it suffices to show |J, W/ ;é V.

Identify V’ with k™. Form the polynomial ring P := k[Xy,..., X e\zh )
take a linear form f; € P that vanishes on W/. Set f = 7 is the
highest power of any variable in f. But r < d. Xsaf ,an € 8 with
f(a1,...,ay) #0. Then (al,..., ) .

U; 0@%{31165 U; =W for
some 1. Thus W - g
Flnally, x of (3 y 1@ -vector space. O
a fi

R = k[X,Y] the polynomial ring in two

Le
les m:= ?’ 6@ is a union of strlctly smaller primes.

SOLUTION: Sinte R is a UFD, and m is maximal, so prime, any nonzero f € m
has a prime factor p € m. Thus m = (J (p), but m # (p) as m is not principal. [

For (3), for all 4, set U; :=

EXERCISE (3.23). — Find the nilpotents in Z/(n). In particular, take n = 12.

SOLUTION: An integer m is nilpotent modulo 7 if and only if some power m* is

divisible by n. The latter holds if and only if every prime factor of n occurs in m.
In particular, in Z/(12), the nilpotents are 0 and 6. O

EXERCISE (3.24). — Let R be a ring. (1) Assume every ideal not contained in
nil(R) contains a nonzero idempotent. Prove that nil(R) = rad(R). (2) Assume R
is Boolean. Prove that nil(R) = rad(R) = (0).

SOLUTION: or (1), recall (3.22.1), that nil(R) C rad(R). To prove the opposite
inclusion, set R’ := R/nil(R). Assume rad(R’) # (0). Then there is a nonzero
idempotent e € rad(R'). Then e(1 —e) = 0. But 1 — e is a unit by (3.2). So e =0,
a contradiction. Hence rad(R’) = (0). Thus (1.9) yields (1).

For (2), recall from (1.2) that every element of R is idempotent. So nil(R) = (0),
and every nonzero ideal contains a nonzero idempotent. Thus (1) yields (2). O

EXERCISE (3.25). — Let ¢: R — R’ be a ring map, b C R’ a subset. Prove
tp*l\/g =/ plb.
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R:=P/(X2, X3, ...). Let a, be the residue of X,,. Then a? =0, but Y a, X" is
not nilpotent. Thus (1) holds.

For (2), given g = > b,X™ € rad(R[[X]]), note that 1 + fg is a unit if and only
if 1 4+ apbp is a unit by (3.10). Thus (3.2) yields (2) holds.

For (3), note M contains X and m, so the ideal they generate. But f = ag+ Xg
for some g € R[[X]]. So if f € M, then ap € M N R = m. Thus (3) holds.

For (4), note that X € rad(R[[X]]) by (2). So X and m generate 9% by (3). So
P/n = R/m by (3.10). Thus (2.17) yields (4).

In (5), plainly aR[[X]] C 2. Now, assume f := > a,X™ € 2, or all a,, € a. Say

bi,...,by € a generate. Then a,, = 2211 cnib; for some c¢,; € R. Thus, as desired,
m m
n>0 i=1 i=1  n>0
For a counterexample, take ag,aq,... to be variables. Take R := Z[ay, az,...]

and a := (a1,as,...). Given g € aR[[X]], say g = >, big; with b; € a and
gi = Zn>0 b;n X™. Choose p greater than the maximum n such that a, occurs

in any b;. Then 221 bibin, € (a1,...,ap_1), but a, & (a1,...,ap—1) Ther{fiv

g# f:=>a, X" Thus f ¢ aR[[X], but f € 2. C

4. Modules tesa\e

EXERCISE (4.3). — Let R be agyf gw dule. Cop@et map
0

ned o(

1-& Vi 4 ().
Sho 1 @Wsomorphlsm ar@%i its mverse.

TON: Fl? ear, because
p(z + 2¥') =(20F 2'0') (1) = 20(1) + 2'0' (1) = zp(0) + 2" p(¢").
Set H := Hom(R, M). Define a: M — H by a(m)(z) := am. It is easy to check
that ap = 1 and pa = 1. Thus p and « are inverse isomorphisms by (4.2). O

EXERCISE (4.12). — Let R be a domain, and z € R nonzero. Let M be the
submodule of Frac(R) generated by 1, x=!, 72 .... Suppose that M is finitely

generated. Prove that z=! € R, and conclude that M = R.
SOLUTION: Suppose M is generated by my, ..., my. Say m; = Y_7% aa~/ for
some n; and a;; € R. Set n:= max{n;}. Then 1, =1 ... 2" generate M. So
) =g e+ gz +ag
for some a; € R. Thus
zl=a,+ - +az" !t +apz" € R.
Finally, as 2=' € R and R is a ring, also 1, 27!, 27 2,... € R; so M C R.
Conversely, M D Ras 1€ M. Thus M = R. O
EXERCISE (4.13). — A finitely generated free module has finite rank.

SOLUTION: Say ey for A € A form a free basis, and my, ..., m, generate. Then
m; = Zzijekj for some x;;. Consider the e by that occur. Plainly, they are finite
in number, and generate. So they form a finite free basis, as desired. O
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EXERCISE (4.16). — Let A be an infinite set, Ry a nonzero ring for A € A. Endow
[ Rx and @ R, with componentwise addition and multiplication. Show that [ Rx
has a multiplicative identity (so is a ring), but that @ Ry does not (so is not a ring).

SorLuTION: Consider the vector (1) whose every component is 1. Obviously, (1)
is a multiplicative identity of [] Ry. On the other hand, no restricted vector (xy)
can be a multiplicative identity in @ R; indeed, because A is infinite, z,, must be
zero for some p. So (1) - (ya) # (yx) if y, # 0. O

EXERCISE (4.17). — Let R be a ring, M a module, and M’, M" submodules.
Show that M = M' ® M" if and only if M = M’ + M" and M' N M" = 0.

SoLuTION: Assume M = M’ @ M"”. Then M is the set of pairs (m/, m”) with
m’ € M’ and m"” € M" by (4.15); further, M’ is the set of (m’,0), and M’ is that
of (0,m"). So plainly M = M' 4+ M" and M' N M" = 0.

Conversely, consider the map M’ @ M"” — M given by (m',m”) — m’+m”. Tt is
surjective if M = M’ + M". Tt is injective if M’ N M" = 0; indeed, if m’ +m” =0,
then m’ = —m” € M’ N M" =0, and so (m’,m") = 0 as desired. O

EXERCISE (4.18). — Let L, M, and N be modules. Consider a diagram UK
where «, 3, p, and o are homomorph
M = LEBN ﬁ Z TN, 126
if and only if the 11 a ions hold: {
O ﬂafl 21 and ap+of = 1.

P TION If o= LL, = TN, OLN, p = 7L, then the definitions
1mmedlately yieldap < ]l and fa =0, fo =1, po =0, pa=1.

Conversely, assume ap —|— of=1and fa =0, fo =1, po =0, pao = 1. Consider
the maps ¢: M — L@ N and 0: L & N — M given by om := (pm, fm) and
0(l,n) := al + on. They are inverse isomorphisms, because

wl(l,n) = (pad 4+ pon, Pal+ Bon) = (I,n) and Opm = apm + ocfm =m.

Lastly, 8 = mny¢ and p = 7w by definition of ¢, and o = 0i, and ¢ = Oy by
definition of 6. O

EXERCISE (4.19). — Let L be a module, A a nonempty set, M, a module for
A € A. Prove that the injections ¢,,: M,;, — € M) induce an injection

@ Hom(L, M) — Hom(L, @ M,),
and that it is an isomorphism if L is finitely generated.

SOLUTION: For A € A, let a): L — M), be maps, almost all 0. Then

(Z L,\Oz)\)(l) = (a)\(l)) S @M}V
So if > txay =0, then ay = 0 for all A. Thus the ¢,; induce an injection.

Assume L is finitely generated, say by l1,...,l;. Let a: L — @ M) be a map.
Then each «(l;) lies in a finite direct subsum of @ M. So (L) lies in one too. Set
oy 1= mea for all k € A. Then almost all «,; vanish. So () lies in @ Hom(L, M),
and Y txa = a. Thus the ¢,; induce a surjection, so an isomorphism. O



178 Solutions: (5.37)

quotient of Hom(R®™ N) by (5.9). So Hom(P, N) is finitely generated too.
Suppose now there is a finite presentation F5, — F; — N — 0. Then (5.22) and
(5.23) yield the exact sequence

Hom(R®™, Fy) — Hom(R®™, F}) — Hom(R®™, N) — 0.
But the Hom(R®™, F;) are free of finite rank by (4.15.1) and (4.15.2). Thus
Hom(R®™ N) is finitely presented.
As above, Hom (K, N) is finitely generated. Consider the (split) exact sequence
0 — Hom(K, N) — Hom(R®™, N) — Hom(P, N) — 0.
Thus (5.28) implies Hom (P, N) is finitely presented. O

EXERCISE (5.26). — Let R be a ring, and 0 - L — R - M — 0 an exact
sequence. Prove M is finitely presented if and only if L is finitely generated.

SOLUTION: Assume M is finitely presented; say R — R™ — M — 0 is a finite
presentation. Let L’ be the image of R'. Then L' ® R" ~ L & R™ by Schanuel’s
Lemma (5.25). Hence L is a quotient of R! @ R™. Thus L is finitely generated.

Conversely, assume L is generated by £ elements. They yield a surjecti K
by (4.10)(1). Tt yields a sequence R* — R™ — M — 0. Thegatter i @y‘exa
Thus M is finitely presented. \é

EXERCISE (5.27). — Let R be a ri émt y variables. Set
P:=R[X1,Xo,...] and M : W‘( Is /2 nted? Explain.
2, would be generated

SOLUTION (5 26
by s , SO also by for some m, but plainly it isn’t. [

P RCISE (5 29 9—) L% M Z, N = 0 be a short exact sequence with
fi

M finitely genera d and nitely presented. Prove L is finitely generated.

ct

SOLUTION: Let R be the ground ring. Say M is generated by m elements. They
yield a surjection p: R™ —» M by (4.10)(1). As in (5.28), p induces the following
commutative diagram, with A surjective:

0 —>K —>R"— N —0

)\l Ml lNl
0 LML N0

By (5.26), K is finitely generated. Thus L is too, as \ is surjective. O

EXERCISE (5.36). — Let R be a ring, and a1, ...,a, € R with {(a1) D - D (am).
Set M := (R/{a1)) ® - & (R/{am)). Show that F,.(M) = (a1 am—r).
SoLUTION: Form the presentation R™ < R™ — M — 0 where o has matrix
a1 0
A =
0 Am,

Set s :=m —r. Now, a; € {(a;—1) for all i > 1. Hence a;, ---a;, € {ay---as) for all

s

1<d <+ <ig <m. Thus I;(A) = {ay - - - as), as desired. ]
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SOLUTION: The monomials form a free basis, so P is faithfully flat by (9.7). O

EXERCISE (9.10). — Let R be a ring, M and N flat modules. Show that M @ N
is flat. What if “flat” is replaced everywhere by “faithfully flat”?

SOLUTION: Associativity (8.10) yields (M @ N) ® ¢ = M ® (N ® e); in other
words, (M @ N)@ e = (M ®e)o (N ®e). So (M ® N)® e is the composition of
two exact functors. Hence it is exact. Thus M ® N is flat.

Similarly if M and N are faithfully flat, then M ® N ® e is faithful and exact.
So M ® N is faithfully flat. O

EXERCISE (9.11). — Let R be a ring, M a flat module, R’ an algebra. Show that
M ®pg R’ is flat over R’. What if “flat” is replaced everywhere by “faithfully flat”?

SoruTION: Cancellation (8.11) yields (M @ g R') @ rr ¢ = M @pe. But M Qp e
is exact, as M 1is flat over R. Thus M ®pr R’ is flat over R'.

Similarly, if M is faithfully flat over R, then M ® e is faithful too. Thus M ®p R’
is faithfully flat over R’.

EXERCISE (9.12). — Let R be aring, R’ a flat algebra, M a flat R’- m@ %K

that M is flat over R. What if “flat” is replaced everywher %‘f

SoLuTION: Cancellation (8.11) yields M ®@g.e @‘
and M ®p/ e are exact; so their comp& 00

Similarly, as the comp0s1t1

assertion remains tru& lace Q ully flat.” ([l
et R be a JL alge ra, R an R'-algebra, and M an
at

EXERC %
v& ssuie t er R and faithfully flat over R’. Prove that
P 1s flat over RP

SoLUTION: Let N’ — N be an injective map of R-modules. Then the map
N' ®@r M — N ®g M is injective as M is flat over R. But by Cancellation (8.11),
that map is equal to this one:

(N'@r R')9r M — (N ®r R') @ M.

And M is faithfully flat over R’. Hence the map N’ @ g R’ — N ®pr R’ is injective
by (9.4). Thus R’ is flat over R. O

. But R’ ®re
5 M is flat over R.

EXERCISE (9.14). — Let R be aring, a an ideal. Assume R/a is flat. Show a = a?.

SOLUTION: Since R/a is flat, tensoring it with the inclusion a — R yields an
injection a ®g (R/a) = R ®pg (R/a). But the image vanishes: a @ 7 =1 ® ar = 0.
Further, a @ (R/a) = a/a® by (8.16). Hence a/a®> = 0. Thus a = a°. O

EXERCISE (9.15). — Let R be a ring, R’ a flat algebra. Prove equivalent:

(1) R’ is faithfully flat over R.

(2) For every R-module M, the map M % M &g R’ by am = m®1 is injective.
(3) Every ideal a of R is the contraction of its extension, or a = ¢~ (aR’).

(4) Every prime p of R is the contraction of some prime q of R/, or p = ¢~ g .
(5) Every maximal ideal m of R extends to a proper ideal, or mR’ # R’.

(6) Every nonzero R-module M extends to a nonzero module, or M ® g R’ # 0.
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N/ C N,. But N’ D N. Thus N;, = N,, for n > nq, as desired.
Let N” = @ N]/ € M be homogeneous with N/ = N,, for n > ny. Let m € N”
and p > ny. Then Rym € P N/!C N. Som € N'. Thus N” C N'. O

n>nsg
EXERCISE (20.25). — Let R be a graded ring, a a homogeneous ideal, and M a
graded module. Prove that v/a and Ann(M) and nil(M) are homogeneous.

SOLUTION: Take z = > /2" x; € R with the x; the homogeneous components.

First, suppose z € v/a. Say z¥ € a. Either ¥ vanishes or it is the initial
component of z¥. But a is homogeneous. So ¥ € a. So z, € Va. So x — z, € \/a
by (3.31). So all the z; are in y/a by induction on n. Thus /a is homogeneous.
Second, suppose x € Ann(M). Let m € M. Then 0 = om = Y a;m. If m
is homogeneous, then xz;m = 0 for all 4, since M is graded. But M has a set of

homogeneous generators. Thus z; € Ann(M) for all i, as desired.
Finally, nil(M) is homogeneous, as nil(M) = /Ann(M) by (13.28). O

EXERCISE (20.26). — Let R be a Noetherian graded ring, M a finitely generated
graded module, @) a submodule. Let Q* C @ be the submodule generated by t
homogeneous elements of Q). Assume @ is primary. Then Q* is primary too

SOLUTION: Let x € R and m € M be homogeneoub Wi h m g@
x ¢ nil(M/Q*). Then, given E > 1, there is m’ € M So m/ has

a homogeneous component m' Wlth T ” ¢ (@ by definition
of @*. Thus = ¢ nil(M/Q). Slnce ﬁé €q 8.4). Since m is
homogeneous, m € Q*, }Q arty b (20_% 66
EXERCISE (2Q. the ¢ n ), assume that R is a domain
and Q\éml closure Rin % a finitely generated R-module.
P(@ ethat? ous f € R with Ry = Ry.
Prove tha Polynomlals of R and R have the same degree and
same leading coefficient.

SOLUTION: Let z1,...,2, be homogeneous generators of R as an R-module.
Write z; = aiibi with a;,b; € R homogeneous. Set f := [[b;. Then fz; € R
for each i. So Ry = Ry. Thus (1) holds.

Consider the short exact sequence 0 -+ R — R — R/R — 0. Then (R/R); =0
by (12.20). So deg h(R/R,n) < deg h(R,n) by (20.10) and (1). But

h(R,n) = h(R,n) + h(R/R,n)
by (19.9) and (20.8). Thus (2) holds. O

21. Dimension

EXERCISE (21.6). — Let A be a Noetherian local ring, N a finitely generated
module, y1,...,y, asop for N. Set N; := N/{y1,...,y;)N. Show dim(V;) = r — 1.

SoruTION: First, dim(N) = r by (21.4). Then dim(N;) > dim(N;_1) — 1 for all

i by (21.5), and dim(N,) = 0 by (19.18). So dim(N;) =r — i for all i. O
EXERCISE (21.9). — Let R be a Noetherian ring, and p be a prime minimal
containing z1,...,z,. Given r’ with 1 < ¢/ < r, set R’ := R/(z1,...,z) and

p’ :=p/{x1,...,2). Assume ht(p) = r. Prove ht(p’) =r — 1.
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SOLUTION: Assume A is regular. Given a regular sop xy,..., ., let’s show it’s
an A-sequence. Set A; := A/(x1). Then A; is regular of dimension r — 1 by
(21.23). So z1 # 0. But A is a domain by (21.24). So z; ¢ z.div(A). Further, if
r > 2, then the residues of xs, ..., x, form a regular sop of A;; so we may assume
they form an Aj-sequence by induction on r. Thus z1,...,z, is an A-sequence.

Conversely, if m is generated by an A-sequence 1, . .., z,, then n < depth(A4) <r
by (23.4) and (23.5)(3), and n > 7 by (21.19). Thus then n = depth(A) = r,
and so A is regular and Cohen—Macaulay. O

EXERCISE (23.11). — Let A be a DVR with fraction field K, and f € A a nonzero
nonunit. Prove A is a maximal proper subring of K. Prove dim(A) # dim(Ay).

SOLUTION: Let R be a ring, A ; R C K. Then there’s an x € R — A. Say
x = ut™ where u € A* and t is a uniformizing parameter. Then n < 0. Set
y:=u1t"""! Theny € A. Sot ! = a2y € R. Hence wt™ € R for any w € A*
and m € Z. Thus R = K, as desired.

Since f is a nonzero nonunit, A ; Ay C K. Hence Ay = K by the above. So
dim(Ay) = 0. But dim(A4) =1 by (23.10).

EXERCISE (23.12). — Let k be a field, P := k[X,Y] the polynomjgl

variables, f € P an irreducible polynomial. Say f = ¢ ) ¢ with
UX,Y) = aX +bY for a,b € k and with g € R = P/{f) and
p:=(X,Y)/(f). Prove that R, is a QVR i i 75 0. (Thus R, is a DVR

if and only if the plane curve ﬁ,\ onsing ).)
p

SOLUTION Set A g 6%2) 12.4) yield
A/m (R/p) i m/m? =
ecC

P ( @\, assume % tor space m/m? is generated by the i 1mages x
and y of X and ly, the image of f is 0 in m/m2. Also, g € (X,Y)?;
its image in m/m?'is also 0. Hence, the image of £ is 0 in m/m?; that is, x and y are
linearly dependent. Now, f cannot generate (X,Y), so m # 0; hence, m/m? # 0 by
Nakayama’s Lemma, (10.11). Therefore, m/m? is 1-dimensional over k; hence, m
is principal by (10.13)(2). Now, since f is irreducible, A is a domain. Hence, A is
a DVR by (23.10).
Conversely, assume £ = 0. Then f =g € (X,Y)?. So

m/m* =p/p? = (X,V)/(X,Y)%
Hence, m/m? is 2-dimensional. Therefore, A is not a DVR by (23.11). O

EXERCISE (23.13). — Let & be a field, A a ring intermediate between the poly-
nomial ring and the formal power series ring in one variable: k[X] C A C k[[X]].
Suppose that A is local with maximal ideal (X). Prove that A is a DVR. (Such
local rings arise as rings of power series with curious convergence conditions.)

SOLUTION: Let’s show that the ideal a := [, 5((X") of A is zero. Clearly, a is a
subset of the corresponding ideal (1,5, (X™) of k[[X]], and the latter ideal is clearly
zero. Hence (23.3) implies A is a DVR. O

EXERCISE (23.14). — Let L/K be an algebraic extension of fields, Xi,..., X,
variables, P and @ the polynomial rings over K and L in X1,..., X,.

(1) Let q be a prime of @, and p its contraction in P. Prove ht(p) = ht(q).
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Ideal Theorem (21.10). Then R[y], is Noetherian of dimension 1. But L/K is a
finite field extension, so L/ Frac(R[y]) is one too. Hence the integral closure R’ of
R[y], in L is a Dedekind domain by (26.18). So by the Going-up Theorem (14.3),
there’s a prime q of R’ lying over pR[y],. Then as R’ is Dedekind, R is a DVR of
L by (24.7). Further, y € qR;. Thus x ¢ Ry, as desired. O



