Preview from Addition of Additional Preview pagesic Probability

Each possible outcome of attailable is an event.

- Simple event
 - An event described by a single characteristic
 - e.g., A day in January from all days in 2013
- Joint event
 - An event described by two or more characteristics
 - e.g. A day in January that is also a Wednesday from all days in 2013
- Complement of an event A (denoted A')
 - All events that are not part of event A
 - e.g., All days from 2013 that are not in January

Computing a marginal (or simple) probability:

 $P(A) = P(A \text{ and } B_1) + P(A \text{ and } B_2) + \dots + P(A \text{ and } B_k)$

Where B₁, B₂, ..., B_k are k mutually exclusive and collectively exhaustive events

What is the probability that a car has a GPS, given that it has AC ?

i.e., we want to find P(GPS | AC)

Note: If A and B are independent, then P(A | B) = P(A)and the multiplication rule simplifies to

P(A and B) = P(A)P(B)

Online Topic

Counting Rules

Counting Rules - 1

Counting Rules Rules for corneling the number of possible outcomes page

- Counting Rule 1:
 - If any one of k different mutually exclusive and collectively exhaustive events can occur on each of n trials, the number of possible outcomes is equal to

- Example
 - If you roll a fair die 3 times then there are 6³ = 216 possible outcomes