



- Definitionsk

  Notesale.

  Discrete waliables produce outcomes that come from a counting process (e.g. number of classes you are taking).
- Continuous variables produce outcomes that come from a measurement (e.g. your annual salary, or your weight).



Discrete Randomukariables

Can only assume a countable number of values

Pranties: Page 5

Roll a die twice Let X be the number of times 4 occurs (then X could be 0, 1, or 2 times)

Toss a coin 5 times. Let X be the number of heads (then X = 0, 1, 2, 3, 4, or 5)





- Expected Rick
   Investment portfolies usually contain several different funds (random variables)
- The expected return and standard deviation of two funds together can now be calculated.
- Investment Objective: Maximize return (mean) while minimizing risk (standard deviation).





# Portfolio Example

Investment X: 
$$\mu_X = 50$$
  $\sigma_X = 43.30$  evice investment Y:  $\mu_Y = 95$   $\sigma_Y = 193.21$   $\sigma_{XY} = 8250$ 

Suppose 40% of the portfolio is in Investment X and 60% is in Investment Y:

$$E(P) = 0.4(50) + (0.6)(95) = 77$$

$$\sigma_{\rm p} = \sqrt{(0.4)^2 (43.30)^2 + (0.6)^2 (193.71)^2 + 2(0.4)(0.6)(8,250)}$$
  
= 133.30

The portfolio return and portfolio variability are between the values for investments X and Y considered individually

# The Binomial Distribution





Shape uk

The shape of the binomial distributes depends on the value of and r

Here, n = 5 and  $\pi = .1$ 

• Here, n = 5 and  $\pi = .5$ 







| MOLES |                      |     |        |                         |        |        |        |        |        |    |
|-------|----------------------|-----|--------|-------------------------|--------|--------|--------|--------|--------|----|
|       | $\frac{43}{40} = 10$ |     |        |                         |        |        |        |        |        |    |
| pre'  | iëW                  | 110 | π=.20  | <b>7</b> π=. <b>2</b> 3 | π=.30  | π=.35  | π=.40  | π=.45  | π=.50  |    |
| ble,  | 0                    | Pa  | ).1074 | 0.0563                  | 0.0282 | 0.0135 | 0.0060 | 0.0025 | 0.0010 | 10 |
|       | 1                    |     | 0.2684 | 0.1877                  | 0.1211 | 0.0725 | 0.0403 | 0.0207 | 0.0098 | 9  |
|       | 2                    |     | 0.3020 | 0.2816                  | 0.2335 | 0.1757 | 0.1209 | 0.0763 | 0.0439 | 8  |
|       | 3                    |     | 0.2013 | 0.2503                  | 0.2668 | 0.2522 | 0.2150 | 0.1665 | 0.1172 | 7  |
|       | 4                    |     | 0.0881 | 0.1460                  | 0.2001 | 0.2377 | 0.2508 | 0.2384 | 0.2051 | 6  |
|       | 5                    |     | 0.0264 | 0.0584                  | 0.1029 | 0.1536 | 0.2007 | 0.2340 | 0.2461 | 5  |
|       | 6                    |     | 0.0055 | 0.0162                  | 0.0368 | 0.0689 | 0.1115 | 0.1596 | 0.2051 | 4  |
|       | 7                    |     | 0.0008 | 0.0031                  | 0.0090 | 0.0212 | 0.0425 | 0.0746 | 0.1172 | 3  |
|       | 8                    |     | 0.0001 | 0.0004                  | 0.0014 | 0.0043 | 0.0106 | 0.0229 | 0.0439 | 2  |
|       | 9                    |     | 0.0000 | 0.0000                  | 0.0001 | 0.0005 | 0.0016 | 0.0042 | 0.0098 | 1  |
|       | 10                   |     | 0.0000 | 0.0000                  | 0.0000 | 0.0000 | 0.0001 | 0.0003 | 0.0010 | 0  |
|       |                      |     |        |                         |        |        |        |        |        |    |
|       |                      |     | π=.80  | π=.75                   | π=.70  | π=.65  | π=.60  | π=.55  | π=.50  | x  |

# **Examples:**

$$n = 10, \pi = 0.35, x = 3$$
:  $P(X = 3|10, 0.35) = 0.2522$ 

$$n = 10, \pi = 0.75, x = 8$$
:  $P(X = 8|10, 0.75) = 0.0004$ 





Poisson Distribution Formula

Preview from Notes ale.

Preview from Notes ale.

$$P(X = x \mid \lambda) = \frac{e^{-\lambda} \lambda^{x}}{X!}$$

# where:

x = number of events in an area of opportunity

 $\lambda$  = expected number of events

e = base of the natural logarithm system (2.71828...)