


58. If P (x_1 , y_1) is the mid point of a chord AB (other than the diameter) of the circle S = 0 then the equation of secant \overleftarrow{AB} is $S_1 = S_{11}$.

59.Common tangent of a circles :

A straight line L is said to be a common tangents to the circles S= 0 and S' = Q if it is tangent to both S = 0 and S' = 0.

60.Touch each other of two circles :

Two circles are said to be touching each other if they have only one common tangent .

MODEL – 4

11.Show that the circles $x^2 + y^2 - 6x - 2y + 1 = 0$, $x^2 + y^2 + 2x - 8y + 13 = 0$ touch each other. Find the point of contact and the equation of common tangent at their point of contact.

12.Show that the circles $x^2 + y^2 - 6x - 9y + 13 = 0$, $x^2 + y^2 - 2x - 16y = 0$ touch each other. Find the point of contact and the equation of common tangent at their point of contact.

13.Show that the circles $x^2 + y^2 - 4x - 6y - 12 = 0$, $x^2 + y^2 + 6x + 18y + 26 = 0$ touch each other. Find the point of contact and common tangent at this point of contact.

14. Show that the circles $x^2 + y^2 - 4x - 6y - 12 = 0$, $5(x^2 + y^2) - 8x - 14y - 32 = 0$ touch each other. Find the point of contact.

<u> MODEL – 5</u>

15.Find the direct common tangents of the circles $x^2 + y^2 + 22x - 4y - 100 = 0$ and $x^2 + y^2 + 4x + 4y + 100 = 0$. **16.**Find the transverse common tangents of the circles $x^2 + y^2 - 45$ for x + 28 = 0 and $x^2 + y^2 + 4x - 6y + 4 = 0$. **MODEL – 6 17.**The combined equation is the pair of tangents drawn from an external point $P(x_1, y_1)$ to the circle S = 0is $SS_{11} = S_1^2$.

18. Find the equations of circles which touch 2x - 3y + 1 = 0 at (1, 1) and having radius $\sqrt{13}$.

19. Find the equation of circle which touch the circle $x^2 + y^2 - 2x - 4y - 20 = 0$ externally at (5, 5) with radius 5.

20. Find the equation of circle which touch the circle $x^2 + y^2 - 4x + 6y - 12 = 0$ internally at (-1, 1) with radius 2.

13.Show that x + y + 1 = 0 touches the circle $x^2 + y^2 - 3x + 7y + 14 = 0$ and find its point of contact. **14.** Find the equation of the circle with centre (2, 3) and touching the line 3x - 4y + 1 = 0. **15.** Find the equation of the circle with centre (-2, 3) cutting a chord length 2 units on 3x + 4y + 4 = 0. **16.** Find equations of tanents to the circle $x^2 + y^2 - 4x + 6y - 12 = 0$ which are parallel to x + y - 8 = 0. (Do the problem taking the line x + 2y - 8 = 0 instead of x + y - 8 = 0) **17.** Find equations of tanents to the circle $x^2 + y^2 + 2x - 2y - 3 = 0$ which are parallel to 3x - y + 4 = 0. **18.** Find the equation of tangent and normal at (3, 2) of the circle $x^2 + y^2 - x - 3y - 4 = 0$. **19.** Find the equation of tangent and normal at (1, 1) of the circle $2x^2 + 2y^2 - 2x - 5y + 3 = 0$. **20.** Find the equations of tangents to $x^2 + y^2 - 2x + 4y = 0$ at (3, -1). Also find the equation of tangent Parallel to it . Find the equation circle whose centre lie on the X – axis and pasting the Gen from Notesa nd (4. 5). AP March 2015 MODEL – 6 B are the roots of the equation $x^2 + 2ax - b^2 = 0$ and ordinates of A , B are **21.**If the abscissae of point roots of $y^2 + 2py - q^2 = 0$ then find the equation of a circle for which \overline{AB} is a diameter. **22.**Show that A(-3, 0) lies on the circle $x^2 + y^2 + 8x + 12y + 15 = 0$ and find the other end of diameter through A. **23.** Show that A(3, -1) lies on the circle $x^2 + y^2 - 2x + 4y = 0$. Also find the other end of diameter through A. **24.** Prove that the tangent at (3, -2) of the circle $x^2 + y^2 = 13$ touches the circle $x^2 + y^2 + 2x - 10y - 26 = 0$ and Find its point of contact. 4 Show that the tangent at (-1, 2) of the circle $x^2 + y^2 - 4x - 8y + 7 = 0$ touches the circle $x^2 + y^2 + 4x + 6y = 0$ also find its point of contact . BOARD MODEL PAPER **25.**Find the mid point of the chord intercepted by $x^2 + y^2 - 2x - 10y + 1 = 0$ on the line x- 2y + 7 = 0. **26**. Find the inverse ppoint of (-2, 3) with respect to the circle $x^2 + y^2 - 4x - 6y + 9 = 0$. Bandaru Chiranjeevi Maths - 2B Circle M. Sc., B. Ed.,

18