$$A = (x^2 + 2x + 1)m^2$$

Therefore, the area of the square is $(x^2 + 2x + 1)m^2$.

4. Find the area of the rectangle with a length of $(x^2 - 1)$ m and a with of $(x^2 + 1)$ m.

Given:

A = ?
$$l = (x^2 - 1) m$$
 $w = (x^2 + 1) m$

Solution:

The area of a rectangle is presented as $\mathbf{A} = \mathbf{I} \times \mathbf{w}$, where \mathbf{I} and w are the dimensions of the rectangle.

So, with that formula, we have,

So, with that formula, we have,
$$A = 1 \times w$$

$$A = (x^2 - 1) \times Q(x^2 + 1) \text{ m}$$
Simplify a partitler, we have
$$A = (x^2 - 1)(x^2 + 1) \text{ m}^2$$

$$A = (x^4 - x^2 + x^2 + 1) \text{ m}^2$$

$$A = (x^4 + 1) \text{ m}^2$$

Therefore, the area of the rectangle is $(x^4 + 1)$ m².