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Figure 2.2: Randomization dlstrlbu{ég‘@.\rﬁat example

Approx1mat1ng a 1str1b ﬁ_ on’t want to have
to enumerate ﬁ ible tr @n‘c@s nts. Instead, repeat the
folloya s

P(S) randomly sim at@%atment assignment from the population of pos-
sible treatment assignments, under the randomization scheme.

(b) compute the value of the test statistic, given the simulated treatment
assignment and under Hy.

The empirical distribution of {g,. .., gysin} approximates the null dis-
tribution :

#(lge]) = 2.4)

. ~ Pr(9(Ya,Yp) > 2.4|Hy)
Nsim

The approximation improves if Nsim increased.
Here is some R-code:

y<- c( 26.9,11.4,26.6,23.7,25.3,28.5,14.2,17.9,16.5,21.1,24.3,19.6)
X<_ C(llAIl IIAII |IBI| lIBll IIAH llBll IIBH IIBH IIAII l1A|l IlBII IIAII)
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Figure 2.8: Randomization distn{u@g@)g—statlstlc
xsim<-sample(x) N ’}—
t.stat. 51m[ns i( Q(y[xsgg @ siffE="A"],var.equal=T)$stat

ereV' e oage
mean( abs(t. stat bs(t.stat.obs) )

When I ran this, I got

#([tV] > 0.75)

—= 0.48 &~ 0.47 = Pr(|T} ,4ny_o| = 0.75)

Is this surprising? These two p-values were obtained via two completely
different ways of looking at the problem!

Comparison:
e Assumptions:

— Randomization Test: (1) Treatments are randomly assigned

— t-test:
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Questions:
e What does the fact that 0 is in the interval say about Hy : pua = pug?
e What is the interpretation of this interval?

e Could we have constructed an interval via randomization tests?

2.9 Power and Sample Size Determination

Suppose that we plan to gather data, and then perform a hypothesis test.

Two sample t-test:

o Hy: pia =i Hy: pa # pp UK
e Gather data \e CO :

e Perform a level o hypothesis ﬁ@]@%f
"( O%I > 11 a@ﬁm;)a
ébdaka\al\—l 0.05 a @ n&%arge then t1_o/2m,4np—2 ~ 2
P We know that tRe typeT error rate is o = 0.05, or more precisely:
Pr(type I error|Hy true) = Pr(reject Hy|H true) = 0.05
What about

Pr(type II error|Hy false) = Pr(accept Hy|Hy false)
= 1 — Pr(reject Hy|Hy false)

This is not yet a well-defined problem: there are many different ways in which
the null hypothesis may be false, e.g. up—pua = 0.0001 and pp—pa = 10,000
are both ways instances of the alternative hypothesis. However, clearly we
have

Pr(reject Ho|lpup — p1a = .0001) < Pr(reject Ho|lpup — pa = 10,000)
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To make the question concerning Type II error-rate better defined we
need to be able to refer to a specific alternative hypothesis. For example, in
the case of the two-sample test, for a specific difference §, we may ask what
is:

1 — Pr(type I error|pup — pa = 6) = Pr(reject Holpup — pra = 0)?

We define the power of a two-sample hypothesis test against a specific
alternative to be:

Power(d,0,n4,n5) = Pr(reject Hy | pp — pra = 0)
= PI'( |t(YA7YB>| > tl—a/?,nA+nB—2| B — A = 5)

Remember, the “critical” value 1_4 /2 n,ny—2 above which we reject thenull
hypothesis was computed from the null distribution. y

However, now we want to work out the probabilit @93 value of
the t-statistic greater than this critical V&llﬁg dcific alternative
te the

hypothesis is true. Thus we neﬁl igtribution of our t-
statistic under the sp ypot

If we sup ew Wy AnA @ MA? and YBl7" YBTLB ~
o

ﬁw wher e» 6 then we need to know the distri-
PAE 29 o
Ys —-Y
t(Ya,Yp) = _ B 74
o JL L1
P\/ ny ng

We know that if ug — a4 = 0 then

Y —Yy—46
T e
Sp\/na T np
but unfortunately
Yp—Y4—6 )
HYAYp) =24 - 4 (%)

1 1 1 1
Sp na np Sp na + np
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So, even though the pairwise error rate is 0.05 the experiment-wise
error rate is 0.26.

This issue is called the problem of multiple comparisons and will be
discussed further in Chapter 3. For now, we will discuss a method of testing
the global hypothesis of no variation due to treatment:

Hy:p;=p,; foralli#j versus Hy:p,; # pj for some i # j
To do this, we will compare treatment variability to experimental vari-

ability. First we need to have a way of quantifying these things.

3.1.1 A model for treatment variation

Data: y;; = measurement from the jth replicate under th ith treatm‘i

i=1,...,t indexes treatments CO U

j =1,...,r indexes observations or 1 {I@@a\e

Treatment means {.mm N 'LBO
preV'®oage 0

61’] = O'2

e 4i; is the ith treatment mean,

e ¢;; represents within treatment variation/error/noise.

Treatment effects model:

Yij = BETTite€y
E[Ei’j] =0
V[GZ’J] = 0'2

e 4 is the grand mean;

e 71,...,7; are the treatment effects, representing between treat-
ment variation
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We can “decompose” each observation as follows:
Yij =0+ @ —9) + Wi; — )
This leads to

(vig —y) = ) + (Wij — i)
total variation = between group variation -+ within group variation

All data can be decomposed this way, leading to the following vectors of
length tr :

Total Treatment Error
yia—9. = W.—9.) + (yi1—91)
yie—y. = (W.—9.) + (ni2—191)

. = . + .
_.|_
+
_.I_

+
= +
= +
. = . + .
Yr—Y. = Ge.—9.) + (Wer—)
SSTotal = SSTrt + SSE
tr—1 = t—1 +  t(r—1)

We've seen degrees of freedom before, in the definition of a x? random
variable:

e dof = the number of statistically independent elements in a vector
In the ANOVA table, the dof have a geometric interpretation:

e dof = the number of components of a vector that can vary indepen-
dently
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Figure 3.5: Normal-theory and randomlzat g@% of the F-statistic

O
Residuals 20 112. q‘(em N _‘ ’L 0

Fobié'agl%@m\blj?m 5 g@ [7%

diet.sim<-sample(diet)
Fsim<-c(Fsim, anova(lm(ctime~diet.sim))$F[1] )

b

> mean(Fsim>=Fobs)
[1] 2e-04

> 1-pf (Fobs,3,20)
[1] 4.658471e-05

3.1.10 Comparing group means

If Hy is rejected, there is evidence that some population means are different
from other. We can explore this further by making treatment comparisons.
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If Hy is rejected we
e cstimate p; with 7; ;
e cstimate o? with

— s2: if variances are very unequal, this might be a better estimate.

— MSE : if variances are close and r is small, this might be a better
estimate.

Standard practice: Unless strong evidence to the contrary, we typically as-
sume V(Y;;) = V(Yi,) = 0%, and use s> = MSE to estimate 0. In this
case,

V() =V(Yi) = o*/n
2/77 UK
The “standard error of the mean” = SE( uz = @e&g estimate of

Vi) =V(Ye)=0*/r;
,&6‘91 error of an esti-

Standard error: Kg nltlon -56
mator 6o q et is an est‘T'- sampling standard deviation:

PYeY pag®

Q

\
2 % >

SE(Q) -

2>

where 42 is an estimate of v2.

Confidence intervals for treatment means: Similar to the one sample
case.

Y — /'[’Z _ \/— _ }/:L',- - IU“L
SE(Y:) \/ SE s/\/Ti
~ tN_¢

Note: degrees of freedom are those associated with MSE, NOT r; — 1. As a

result,
Y:ESE( )th a/2,N—t

is a 100 x (1 — a)% confidence interval for p;.
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was that if the noise € = X,;; + X;jo + --- was the result of the addition of
unobserved additive, independent effects then by the central limit theorem
€;; will be approximately normal.

However, if effects are multiplicative so that in fact:
Yij = pi X €5 = py X (Xij1 X Xyjo X -+ +)
In this case, the Y;; will not be normal, and the variances will not be constant:

Var(Yij) = piVar(Xin X Xija X -+ )

Log transform:

logVi; = logpu;+ (log Xij +l§ Xe S:
V(oY) = V(g jﬁ‘@&ﬁ
i1+ log "12’3_60

\N -‘ alogy 9
?o t%\’le vaman?@% ata does not depend on the mean u;. Also

note that by the imit theorem the errors should be approximately
normally distributed.
Crab data: Let Y;; = log(Y; 5" +1/6)

Site | Mean SD
6 0.82 2.21

4 091 1.87
) 1.01 1.74
3 1.75  2.41
1 216 2.27
2 230 244
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Here are some common transformations:

Mean-var. Relation o A=1-« transform Yi;
oy o const. 0 1 no transform! Yij
Ty X ,u21/2 1/2 1/2 square root yllj/2 Vi
3/4 1/4
Ty X W 3/4 1/4 quarter power Yif
Oy X [ 1 0 log log y;j
Oy X ,u?/2 3/2 -1/2 reciproc. sqr. root ylgl/2
oy o 13 2 -1 reciprocal 1/ v

e All the mean-variance relationships here are examples of power-laws.
Not all mean-variance relations are of this form.

e o =1 is the multiplicative model discussed p é.\oey CO

More about the log transform NO‘G 60
How did o = 1 give § @ _sheldey§ b :
i o 710 :

R\X %mlg will ri@e@(@@we define for any A # 0:
A

) _ Y —1
A

0_ .
]—yij—lln

Y ocy)‘—i—c.

For A = 0, it’s natural to define the transformation as:

A
-1
y = Jmy A0
y Iny
1 A=0

Note that for a given A # 0 it will not change the results of the ANOVA on
the transformed data if we transform using:

A
-1
y' =y or y*mzy)\ =ay* +0.
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e Don’t assume that the transformation is a magical fix: remember to
look at residuals and diagnostics after you do the transform. If things
haven’t improved much, don’t transform.

e Remember that the mean-variance relationship might not be cured by
a transform in the Box-Cox class.

— (e.g. if the response is a binomial proportion (= proportion of
successes out of n), we have mean = p, s.d. = /p(1 — p); the
variance stabilizing transformation in this case is y* = arcsin ,/7.)

e Keep in mind that statisticians disagree on the usefulness of transfor-
mations: some regard them as a ‘hack’ more than a ‘cure’:

— It can be argued that if the scientist who collected the dat h d
a good reason for using certain units, then one sh

transform the data in order to bang it m\é A aped

¢ in

hole. (Given enough time and thou
non-linear model for theﬂ
myou wﬂl n cﬁ %ﬁgjudgment while

SlS

stead build a

o The sad trutl&

perfer@qyd) 0
P nmgs “ r Aﬁ might reach for a transform, whether in
an ANOVA conte ear regression context.

Example (Crab data): Looking at the plot of means vs. sd.s suggests
a ~ 1, implying a log-transformation. However, the zeros in our data lead
to problems, since log(0) = —oc.

Instead we can use y;; = log(yi; + 1/6). (See plots.) For the transformed
data this gives us a ratio of the largest to smallest standard deviation of
approximately 2 which is acceptable based on the rule of 3.

site | sample sd sample mean log(sample sd) log(sample mean)
4 17.39 9.24 2.86 2.22
> 19.84 10.00 2.99 2.30
6 23.01 12.64 3.14 2.54
1 50.39 33.80 3.92 3.52
3 107.44 50.64 4.68 3.92
2 125.35 68.72 4.83 4.23
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Figure 3.15: Mean variance relationship of the transformed data
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4 assigned to (I, B),

It might be helpful to visualize the design as follows:

Delivery
Type A B C D
1 yra Yi.B Yic Yo
2 Yira Y Yic Yiip
3 YA Yirne Yiinc Yiino

This type of design is called a factorial design. Specifically, this design
is a 3 X 4 two-factor design with 4 replications.

Factors: Categories of treatments

Levels of a factor: the different treatme &ory

So in this case, Typ%anwl(\\r oth cté&@gfe are 3 levels of

Type and 4 leve 8 O
P ( @\l]}ata 0

Lets first look at a, series of plots:

Marginal Plots: Based on these marginal plots, it looks like (111, A) would
be the most effective combination. But are the effects of Type consis-
tent across levels of Delivery?

Conditional Plots: Type III looks best across delivery types. But the dif-
ference between types I and II seems to depend on delivery.

Cell Plots: Another way of looking at the data is to just view it as a CRD
with 3 x4 = 12 different groups. Sometimes each group is called a cell.

Notice that there seems to be a mean-variance relationship. Lets take care
of this before we go any further: Plotting means versus standard deviations
on both the raw and log scale gives the relationship in Figure 4.4. Computing
the least squares line gives
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Figure 4.2: Conditional Plots.
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1 parameter for p
ti —1 parameters for a;’s
to—1 parameters for b;’s

t1 +t5 — 1 parameters total.

Parameter estimation and ANOVA decomposition:

Yiji = Yoo + B — 7)) + Gy —F) + Wik — Vi — U T Y)
= @+ Q + b + €ijk

These are the least-squares parameter estimates, under the sum-to-zero

side conditions:
> ai=) (G — ) = ng.. — ng.. =

To obtain the set-to-zero 81de cond1t10ns add a; and b1 to fi, \%¥e
from the a;’s, and subtract by, from the b s. Note th @ G t Change
the fitted value in each group:

fitted(yijx) = mﬁ &GQ

P mlght ea%ewe can erte thls decomposmon out as vectors
of length t1 X t9

y—43. = a + b + &
T = V1 + V2 +

The columns represent
vr variation of the data around the grand mean;
vy variation of factor 1 means around the grand mean;
vy variation of factor 2 means around the grand mean;
v, variation of the data around fitted the values.
You should be able to show that these vectors are orthogonal, and so

Zi Zj Zk(yijk - 3])2 = Zz Zj Zk d? + Zz Zj Zkz 812 + Zz Zj Zk g?
SSTotal = SSA + SSB + SSE
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e The full model allows differences between Types to vary across levels
of Delivery

e The reduced/additive model says differences are constant across levels
of Delivery.

Therefore, the reduced model is appropriate if

(,UIA - /HIA) = (,UIB - MHB) = (,UIC - ,UUC) = (MID - ,UIID)

How can we test for this? Consider the following parameterization of the
full model:

Interaction model:
Y;jk =u+a+ bj + (ab)ij + €ijk O ‘UK
e.C

1 = overall mean; esa'
a, ..., ay —addltlé w ctor 1_‘ ’X—GO

by, . é\P\I}dﬁ‘lve effevﬁfx‘ to@
P (@L\b’w = 1nt?1 @g‘ms = deviations from additivity.

The interaction term is a correction for non-additivity of the factor effects.
This is a full model: It fits a separate mean for each treatment combination:

E(Yijr) = pij = p+ a; + b + (ab)y;

Parameter estimation and ANOVA decomposition:

ik = Yo+ @ —F.) + (T4 —
= o + a + b; + (ab),; +
Deciding between the additive/reduced model and the interaction/full model

is tantamount to deciding if the variance explained by the (ab) s is large or
not.

y.) + (?Jijl—??i-?— Uj. +9.) + (Yije

— Yij.)
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— E(MSAB) = 0% +r7ip > o>
This suggests

e An evaluation of the adequacy of the additive model can be assessed
by comparing M SAB to MSE. Under Hy : (ab);; =0,

Fap = MSAB/MSE ~ F(tl—l)x(tg—l),tltg(r—l)
Evidence against Hy can be evaluated by computing the p-value.

e If the additive model is adequate then M SFE;,; and MSAB are two
independent estimates of roughly the same thing (why independent?).
We may then want to combine them to improve our estimate of o2.

Df Sum Sq Mean Sq F value Pr (>F) uK

pois$deliv 3 0.20414 0.06805 28.3431 1. 3766@3
pois$type 2 0.34877 0.17439 72.63 Tk
pois$deliv:pois$type 6 0.01571 0.002 @9 0.3867
Residuals 36 0.08643 0

For these data re s@@ng‘e}ld l tr ment effects, and little
evidemv\@ itivity. % % to use the additive model.

P 4.1.4 Infere?ceaBr additive treatment effects

Consider a two-factor experiment in which it is determined that the effects
of factor F; and Fy are large. Now we want to compare means across levels
of one of the factors.

Recall in the pesticide example we had 4 reps for each of 3 levels of Type
and 4 levels of Delivery. So we have 4 x 4 = 16 observations for each level of

Type.

The wrong approach: The two-sample t-test is

Y. — Ya..
2/(4 x 4)

For the above example,

o 1. — o = 0.047
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(population) means:
|Fo=1|FKR=2|FKL=3|FK=4]|
Fy =1 1. 12 13- 14 4.
Fi=2| [ 22 423. 424. 4.
Fir=3| ja1 32 33 34 4f3..
| 31 | 32 | 3fs | 3pa | 124

So
a; —ay = ﬂl.. — ﬂg..
= (. + flaz. + faz + flia) /4 — (B21. + 2o + oz, + fl2a.) /4

Like any contrast, we can estimate/make inference for it using contrasts of
sample means:

a1 — ay = a1 — 4o = ¥Y1.. — Y. is an unbiased estimate of U\(
Note that this estimate is the corresponding co%@m g the t; X 1y

B aiary e
[ . . Y23. Y24. Y.
P ( e 'ﬁe; Ys2: Uss: Uss | 4ys.

‘ 300 | 302 | 30s | 304 | 120.

a; — Ay = gl-- — gg..
= (J11. + Y12 + Y1z + G14.)/4 — (Yo1. + Yoo + Yoz + You.) /4

Hypothesis tests and confidence intervals can be made using the standard
assumptions:

[} E(dl - dQ) = a1 — Qy
e Under the assumption of constant variance:
Vit —a2) = V(j. — 1)
= V(o) +V(52.)
= 0/(r xty) +0*/(r x ty)
= 20%/(r x t3)
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then it will increase the variance in response and also the experimental error
variance/MSE if unaccounted for. If F» is a known, potentially large source
of variation, we can control for it pre-experimentally with a block design.

Blocking: The stratification of experimental units into groups that are more
homogeneous than the whole.

Objective: To have less variation among units within blocks than between
blocks.

Typical blocking criteria:
e location

e physical characteristics

e time \e CO ‘u
Example(Nitrogen fertilizer tuN ﬁoes th@mmg of nitrogen
additive affect nitrog € _‘ /X—G

e Trea r@\l\& erent t)X: he es 1,...,6: Level 4 is “stan-

P e Response: l@@g take (ppmx10=2)

e Experimental material: One irrigated field

Soil moisture is thought to be a source of variation in response.

Design:
1. Field is divided into a 4 x 6 grid.

2. Within each row or block, each of the 6 treatments are randomly
allocated.

1. The experimental units are blocked into presumably more homoge-
neous groups.

2. The blocks are complete, in that each treatment appears in each block.
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Figure 4.13: Marginal plots and residuals

130
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Consider comparing the F-stat from a CRD with that from an RCB: Accord-
ing to Cochran and Cox (1957)

SSB t—1)MSE,,
MSE., — +rit_1) bd

— MSB (g) + MSE, (T(t - 1>)
rt — 1

rt —1

In general, the effectiveness of blocking is a function of MSE..q/MSE, . If
this is large, it is worthwhile to block. For the nitrogen example, this ratio
is about 2.

4.3 Unbalanced designs
Example: Observational study of 20 fatal accidents, CO ,UK
e Response: y = speed in excess of Sp @O\
e Recorded sources ofv _‘ 3—60
1. Rew -‘a 9not ’( O
P \ e\ﬂ :mtﬁ aé-g@t;&'/two lane highway),

cell means sum marginal means
interstate ‘ two-lane H
rainy 15 5 130 13
7”11:8 7"12:2 7“1.:10
not rainy 20 10 120 12
7”21:2 7“22:8 7“1.:10
sum 160 90 250
rqy=10 | ro=10 | r. =20
marginal mean 16 9 Y. =12.5

Lets naively compute sums of squares based on the decomposition:

<

Yijk -+ Wig. = U) + Wije — Yij.)

y..
A i —9) + (U5 — G) + (Gige — Gieo — U + Gr) + Wik — Yij)

|
A

Yijk =
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50 60 70 80
-0.90902778 -0.02569444 0.19097222 0.74375000

What linear modeling commands in R will get you the same thing?

> options(contrasts=c("contr.sum","contr.poly"))
> fit_full<-1m( y~as.factor(ageg)*as.factor(trt))

> fit_full$coef[2:4]
as.factor(ageg)l as.factor(ageg)2 as.factor(ageg)3
-0.90902778 -0.02569444 0.19097222
> fit_full$coef [5:6]
as.factor(trt)l as.factor(trt)2
0.5347222 0.5826389

Note that the coefficients in the reduced/additive model are not tl\ex%:

>

> fit_add$coef [2:4] O"es
as.factor(ageg)l as.fact g)p WsTfact (aﬁv@O
-0.7920935 -‘( é 554 &‘30
> fit_ad X@@Jﬂ /LAA'
‘Ejﬁ‘fgef 1 as.faﬂggpggft)

07447717 P 8850274

4.3.1 Non-orthogonal sums of squares:

Consider the following ANOVA table obtained from R:

> fit_add<-1m( y”as.factor(ageg)+as.factor(tria\e CO *
.

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(ageg) 3 13.356 4.452 0.9606 0.42737
as.factor(trt) 2 28.2564 14.127 3.0482 0.06613 .
Residuals 24 111.230 4.635

It might be somewhat unsettling that R also produces the following table:

> anova( 1m( y~as.factor(trt)+as.factor(ageg)) )

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(trt) 2 31.588 15.794 3.4079 0.0498 x*
as.factor(ageg) 3 10.021 3.340 0.7207 0.5494
Residuals 24 111.230 4.635
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This is actually what R presents in an ANOVA table:

ssO<-sum( 1m( y~1 )$res”2 )

ssi<-sum( 1m( y~as.factor(ageg) )$res”2 )

ss2<-sum(  1m( y~as.factor(ageg)+as.factor(trt) )$res~2 )
ss3<

vV V V V

> s0-ssi
[1] 13.3554
>

> ssl-ss2
[1] 28.25390
>

> ss2-ss3
[1] 53.75015

> 883

[1] 57.47955 esa_\e
> anova( 1m( y~as. factorm) or( T 6
Df S th value Pr(>F)

as.factor a@'\l 4.452 1.3941 0.27688
3‘ 8 254 14.127 4.4239 0.02737 x*
@ﬁ or(ageg) a@@r 6 53.750 8.958 2.8054 0.04167 *
Residuals 18 57.480 3.193

Why does order of the variables matter?

e In a balanced design, the parameters are orthogonal, and SSA =
SSA|B , SSB = SSB|A and so on, so the order doesn’t matter.

e In an unbalanced design, the estimates of one set of parameters depends
on whether or not you are estimating the others, i.e. they are not
orthogonal, and in general SSA # SSA|B , SSB # SSB|A.

I will try to draw a picture of this on the board.

The bottom line: For unbalanced designs, there is no “variance due to
factor 17 or “variance due to factor 2”. There is only “extra variance due
to factor 1, beyond that explained by factor 2”7, and vice versa. This is
essentially because of the non-orthogonality, and so the part of the variance
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Randomization:
Sulfur type was randomized to whole plots;

Potato type was randomized to subplots.

Initial data analysis: Sixteen responses, 4 treatment comblﬁloU\k

e 8 responses for each potato type Sa\e

e 8 responses for each su%{\yNO 60

o 4 respon W 'ﬁ(hQ) atox Tq@ tl(:)—
Pvef\h\ ?é@@)l fit.add<-1m(y~type+sulfur)

> anova(fit.full

Df Sum Sq Mean Sq F value Pr(>F)
type 1 1.48840 1.48840 13.4459 0.003225 **
sulfur 1 0.54022 0.54022 4.8803 0.047354 *
type:sulfur 1 0.00360 0.00360 0.0325 0.859897
Residuals 12 1.32835 0.11070

> anova(fit.add)

Df Sum Sq Mean Sq F value Pr(>F)
type 1 1.48840 1.48840 14.5270 0.00216 *x*
sulfur 1 0.54022 0.54022 5.2727 0.03893 =*
Residuals 13 1.33195 0.10246



