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CHAPTER 2. COMPARING TWO TREATMENTS 15
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Figure 2.2: Randomization distribution for the wheat example

Approximating a randomization distribution We don’t want to have
to enumerate all

(
n

n/2

)
possible treatment assignments. Instead, repeat the

following Nsim times:

(a) randomly simulate a treatment assignment from the population of pos-
sible treatment assignments, under the randomization scheme.

(b) compute the value of the test statistic, given the simulated treatment
assignment and under H0.

The empirical distribution of {g1, . . . , gNsim} approximates the null dis-
tribution :

#(|gk|) ≥ 2.4)

Nsim
≈ Pr(g(YA,YB) ≥ 2.4|H0)

The approximation improves if Nsim increased.

Here is some R-code:

y<- c( 26.9,11.4,26.6,23.7,25.3,28.5,14.2,17.9,16.5,21.1,24.3,19.6)

x<- c("A","A","B","B","A","B","B","B","A","A","B","A")
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CHAPTER 2. COMPARING TWO TREATMENTS 33
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Figure 2.8: Randomization distribution for the t-statistic

xsim<-sample(x)
t.stat.sim[nsim]<- t.test(y[xsim=="B"],y[xsim=="A"],var.equal=T)$stat

}

mean( abs(t.stat.sim) >= abs(t.stat.obs) )

When I ran this, I got

#(|t(j)| ≥ 0.75)

nsim
= 0.48 ≈ 0.47 = Pr(|TnA+nB−2| ≥ 0.75)

Is this surprising? These two p-values were obtained via two completely
different ways of looking at the problem!

Comparison:

• Assumptions:

– Randomization Test: (1) Treatments are randomly assigned

– t-test:
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CHAPTER 2. COMPARING TWO TREATMENTS 36

Questions:

• What does the fact that 0 is in the interval say about H0 : µA = µB?

• What is the interpretation of this interval?

• Could we have constructed an interval via randomization tests?

2.9 Power and Sample Size Determination

Suppose that we plan to gather data, and then perform a hypothesis test.

Two sample t-test:

• H0: µA = µB H1: µA 6= µB

• Gather data

• Perform a level α hypothesis test: reject H0 if

|tobs| ≥ t1−α/2,nA+nB−2

Recall, if α = 0.05 and nA, nB are large then t1−α/2,nA+nB−2 ≈ 2

We know that the type I error rate is α = 0.05, or more precisely:

Pr(type I error|H0 true) = Pr(reject H0|H0 true) = 0.05

What about

Pr(type II error|H0 false) = Pr(accept H0|H0 false)

= 1− Pr(reject H0|H0 false)

This is not yet a well-defined problem: there are many different ways in which
the null hypothesis may be false, e.g. µB−µA = 0.0001 and µB−µA = 10, 000
are both ways instances of the alternative hypothesis. However, clearly we
have

Pr(reject H0|µB − µA = .0001) < Pr(reject H0|µB − µA = 10, 000)
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CHAPTER 2. COMPARING TWO TREATMENTS 37

To make the question concerning Type II error-rate better defined we
need to be able to refer to a specific alternative hypothesis. For example, in
the case of the two-sample test, for a specific difference δ, we may ask what
is:

1− Pr(type II error|µB − µA = δ) = Pr(reject H0|µB − µA = δ)?

We define the power of a two-sample hypothesis test against a specific
alternative to be:

Power(δ, σ, nA, nB) = Pr(reject H0 | µB − µA = δ)

= Pr( |t(YA,YB)| ≥ t1−α/2,nA+nB−2

∣∣µB − µA = δ).

Remember, the “critical” value t1−α/2,nA+nB−2 above which we reject the null
hypothesis was computed from the null distribution.

However, now we want to work out the probability of getting a value of
the t-statistic greater than this critical value, when a specific alternative
hypothesis is true. Thus we need to compute the distribution of our t-
statistic under the specific alternative hypothesis.

If we suppose YA1, . . . , YAnA
∼ i.i.d. normal(µA, σ) and YB1, . . . , YBnB

∼
i.i.d. normal(µB, σ), where µB − µA = δ then we need to know the distri-
bution of

t(YA,YB) =
ȲB − ȲA

sp

√
1

nA
+ 1

nB

.

We know that if µB − µA = δ then

ȲB − ȲA − δ

sp

√
1

nA
+ 1

nB

∼ tnA+nB−2

but unfortunately

t(YA,YB) =
ȲB − ȲA − δ

sp

√
1

nA
+ 1

nB

+
δ

sp

√
1

nA
+ 1

nB

. (∗)
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CHAPTER 3. COMPARING SEVERAL TREATMENTS 51

So, even though the pairwise error rate is 0.05 the experiment-wise
error rate is 0.26.

This issue is called the problem of multiple comparisons and will be
discussed further in Chapter 3. For now, we will discuss a method of testing
the global hypothesis of no variation due to treatment:

H0 : µi = µj for all i 6= j versus H1 : µi 6= µj for some i 6= j

To do this, we will compare treatment variability to experimental vari-
ability. First we need to have a way of quantifying these things.

3.1.1 A model for treatment variation

Data: yi,j = measurement from the jth replicate under th ith treatment.

i = 1, . . . , t indexes treatments

j = 1, . . . , r indexes observations or replicates.

Treatment means model:

yi,j = µi + εi,j

E[εi,j] = 0

V [εi,j] = σ2

• µi is the ith treatment mean,

• εi,j represents within treatment variation/error/noise.

Treatment effects model:

yi,j = µ + τi + εi,j

E[εi,j] = 0

V [εi,j] = σ2

• µ is the grand mean;

• τ1, . . . , τt are the treatment effects, representing between treat-
ment variation
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CHAPTER 3. COMPARING SEVERAL TREATMENTS 61

We can “decompose” each observation as follows:

yi,j = ȳ + (ȳi − ȳ) + (yi,j − ȳi)

This leads to

(yi,j − ȳ) = (ȳi − ȳ) + (yi,j − ȳi)
total variation = between group variation + within group variation

All data can be decomposed this way, leading to the following vectors of
length tr :

Total Treatment Error
y1,1 − ȳ.. = (ȳ1. − ȳ..) + (y1,1 − ȳ1.)
y1,2 − ȳ.. = (ȳ1. − ȳ..) + (y1,2 − ȳ1.)

. = . + .

. = . + .

. = . + .
y1,r − ȳ.. = (ȳ1. − ȳ..) + (y1,r − ȳ1.)
y2,1 − ȳ.. = (ȳ2. − ȳ..) + (y2,1 − ȳ2.)

. = . + .

. = . + .

. = . + .
y2,r − ȳ.. = (ȳ2. − ȳ..) + (y2,r − ȳ2.)

...
...

...
yt,1 − ȳ.. = (ȳt. − ȳ..) + (yt,1 − ȳt.)

. = . + .

. = . + .

. = . + .
yt,r − ȳ.. = (ȳt. − ȳ..) + (yt,r − ȳt.)

SSTotal = SSTrt + SSE
tr − 1 = t− 1 + t(r − 1)

We’ve seen degrees of freedom before, in the definition of a χ2 random
variable:

• dof = the number of statistically independent elements in a vector

In the ANOVA table, the dof have a geometric interpretation:

• dof = the number of components of a vector that can vary indepen-
dently
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CHAPTER 3. COMPARING SEVERAL TREATMENTS 73

Histogram of Fsim

F

p(
F

_3
,2

0)

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

Figure 3.5: Normal-theory and randomization distributions of the F -statistic

Residuals 20 112.0 5.6

Fobs<-anova(lm(ctime~diet))$F[1]
Fsim<-NULL
for(nsim in 1:1000) {
diet.sim<-sample(diet)
Fsim<-c(Fsim, anova(lm(ctime~diet.sim))$F[1] )

}

> mean(Fsim>=Fobs)
[1] 2e-04

> 1-pf(Fobs,3,20)
[1] 4.658471e-05

3.1.10 Comparing group means

If H0 is rejected, there is evidence that some population means are different
from other. We can explore this further by making treatment comparisons.
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CHAPTER 3. COMPARING SEVERAL TREATMENTS 74

If H0 is rejected we

• estimate µi with ȳi ;

• estimate σ2
i with

– s2
i : if variances are very unequal, this might be a better estimate.

– MSE : if variances are close and r is small, this might be a better
estimate.

Standard practice: Unless strong evidence to the contrary, we typically as-
sume V (Yi,j) = V (Yk,l) = σ2, and use s2 ≡ MSE to estimate σ2. In this
case,

V (µ̂i) = V (Ȳi·) = σ2/ri

≈ s2/ri

The “standard error of the mean” = SE(µ̂i) =
√

s2/ri , is an estimate of
V (µ̂i) = V (Ȳi·) = σ2/ri

Standard error: The usual definition of the standard error of an esti-
mator θ̂ of a parameter θ is an estimate of its sampling standard deviation:

θ̂ = θ̂(Y)

V (θ̂) = γ2

SE(θ̂) = γ̂

where γ̂2 is an estimate of γ2.

Confidence intervals for treatment means: Similar to the one sample
case.

Ȳi· − µi

SE(Ȳi·)
=
√

ri
Ȳi· − µi√

MSE
=

Ȳi,· − µi

s/
√

ri

∼ tN−t

Note: degrees of freedom are those associated with MSE, NOT ri− 1. As a
result,

Ȳi ± SE(Ȳi·)× t1−α/2,N−t

is a 100× (1− α)% confidence interval for µi.

Preview from Notesale.co.uk

Page 79 of 160



CHAPTER 3. COMPARING SEVERAL TREATMENTS 93

was that if the noise ε = Xij1 + Xij2 + · · · was the result of the addition of
unobserved additive, independent effects then by the central limit theorem
εij will be approximately normal.

However, if effects are multiplicative so that in fact:

Yij = µi × εij = µi × (Xij1 ×Xij2 × · · · )

In this case, the Yij will not be normal, and the variances will not be constant:

V ar(Yij) = µ2
i V ar(Xij1 ×Xij2 × · · · )

Log transform:

log Yij = log µi + (log Xij1 + log Xij2 + · · · )
V (log Yij) = V (log µi + log Xij1 + log Xij2 + · · · )

= V (log Xij1 + log Xij2 + · · · )
= σ2

log y

So that the variance of the log-data does not depend on the mean µi. Also
note that by the central limit theorem the errors should be approximately
normally distributed.

Crab data: Let Yi,j = log(Y raw
i,j + 1/6)

Site Mean SD
6 0.82 2.21
4 0.91 1.87
5 1.01 1.74
3 1.75 2.41
1 2.16 2.27
2 2.30 2.44
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CHAPTER 3. COMPARING SEVERAL TREATMENTS 97

Here are some common transformations:

Mean-var. Relation α λ = 1− α transform y∗ij

σy ∝ const. 0 1 no transform! yij

σy ∝ µ
1/2
i 1/2 1/2 square root y

1/2
ij = √

yij

σy ∝ µ
3/4
i 3/4 1/4 quarter power y

1/4
ij

σy ∝ µi 1 0 log log yij

σy ∝ µ
3/2
i 3/2 -1/2 reciproc. sqr. root y

−1/2
ij

σy ∝ µ2
i 2 -1 reciprocal 1/yij

• All the mean-variance relationships here are examples of power-laws.
Not all mean-variance relations are of this form.

• α = 1 is the multiplicative model discussed previously .

More about the log transform

How did α = 1 give us y∗ij = log yij, shouldn’t it be y1−α
ij = yλ

ij = y0
ij = 1 in

there?

Everything will make sense if we define for any λ 6= 0:

y∗(λ) =
yλ − 1

λ
∝ yλ + c.

For λ = 0, it’s natural to define the transformation as:

y∗(0) = lim
λ→0

y∗(λ) = lim
λ→0

yλ − 1

λ

=
yλ ln y

1

∣∣∣∣
λ=0

= ln y

Note that for a given λ 6= 0 it will not change the results of the ANOVA on
the transformed data if we transform using:

y∗ = yλ or y∗(λ) =
yλ − 1

λ
= ayλ + b.
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CHAPTER 3. COMPARING SEVERAL TREATMENTS 99

• Don’t assume that the transformation is a magical fix: remember to
look at residuals and diagnostics after you do the transform. If things
haven’t improved much, don’t transform.

• Remember that the mean-variance relationship might not be cured by
a transform in the Box-Cox class.

– (e.g. if the response is a binomial proportion (= proportion of
successes out of n), we have mean = p, s.d. =

√
p(1− p); the

variance stabilizing transformation in this case is y∗ = arcsin
√

y.)

• Keep in mind that statisticians disagree on the usefulness of transfor-
mations: some regard them as a ‘hack’ more than a ‘cure’:

– It can be argued that if the scientist who collected the data had
a good reason for using certain units, then one should not just
transform the data in order to bang it into an ANOVA-shaped
hole. (Given enough time and thought we could instead build a
non-linear model for the original data.)

• The sad truth: as always you will need to exercise judgment while
performing your analysis.

These warnings apply whenever you might reach for a transform, whether in
an ANOVA context, or a linear regression context.

Example (Crab data): Looking at the plot of means vs. sd.s suggests
α ≈ 1, implying a log-transformation. However, the zeros in our data lead
to problems, since log(0) = −∞.

Instead we can use y∗ij = log(yij + 1/6). (See plots.) For the transformed
data this gives us a ratio of the largest to smallest standard deviation of
approximately 2 which is acceptable based on the rule of 3.

site sample sd sample mean log(sample sd) log(sample mean)
4 17.39 9.24 2.86 2.22
5 19.84 10.00 2.99 2.30
6 23.01 12.64 3.14 2.54
1 50.39 33.80 3.92 3.52
3 107.44 50.64 4.68 3.92
2 125.35 68.72 4.83 4.23
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Figure 3.15: Mean variance relationship of the transformed data
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CHAPTER 4. MULTIFACTOR DESIGNS 103

4 assigned to (I, B),

...

It might be helpful to visualize the design as follows:

Delivery
Type A B C D

1 yI,A yI,B yI,C yI,D

2 yII,A yII,B yII,C yII,D

3 yIII,A yIII,B yIII,C yIII,D

This type of design is called a factorial design. Specifically, this design
is a 3× 4 two-factor design with 4 replications.

Factors: Categories of treatments

Levels of a factor: the different treatments in a category

So in this case, Type and Delivery are both factors. There are 3 levels of
Type and 4 levels of Delivery.

4.1.1 Data analysis:

Lets first look at a series of plots:

Marginal Plots: Based on these marginal plots, it looks like (III, A) would
be the most effective combination. But are the effects of Type consis-
tent across levels of Delivery?

Conditional Plots: Type III looks best across delivery types. But the dif-
ference between types I and II seems to depend on delivery.

Cell Plots: Another way of looking at the data is to just view it as a CRD
with 3×4 = 12 different groups. Sometimes each group is called a cell.

Notice that there seems to be a mean-variance relationship. Lets take care
of this before we go any further: Plotting means versus standard deviations
on both the raw and log scale gives the relationship in Figure 4.4. Computing
the least squares line gives
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Figure 4.2: Conditional Plots.
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CHAPTER 4. MULTIFACTOR DESIGNS 110

1 parameter for µ
t1 − 1 parameters for ai’s
t2 − 1 parameters for bj’s
t1 + t2 − 1 parameters total.

Parameter estimation and ANOVA decomposition:

yijk = ȳ··· + (ȳi·· − ȳ···) + (ȳ·j· − ȳ···) + (yijk − ȳi·· − ȳ·j· + ȳ···)

= µ̂ + âi + b̂j + ε̂ijk

These are the least-squares parameter estimates, under the sum-to-zero
side conditions: ∑

âi =
∑

(ȳi·· − ȳ···) = nȳ··· − nȳ··· = 0

To obtain the set-to-zero side conditions, add â1 and b̂1 to µ̂, subtract â1

from the âi’s, and subtract b̂1 from the b̂j’s. Note that this does not change
the fitted value in each group:

fitted(yijk) = µ̂ + âi + b̂j

= (µ̂ + â1 + b̂1) + (âi − â1) + (b̂j − b̂1)

= µ̂∗ + â∗i + b̂∗j

As you might have guessed, we can write this decomposition out as vectors
of length t1 × t2 × r:

y − ȳ··· = â + b̂ + ε̂
vT = v1 + v2 + ve

The columns represent

vT variation of the data around the grand mean;

v1 variation of factor 1 means around the grand mean;

v2 variation of factor 2 means around the grand mean;

ve variation of the data around fitted the values.

You should be able to show that these vectors are orthogonal, and so∑
i

∑
j

∑
k(yijk − ȳ···)

2 =
∑

i

∑
j

∑
k â2

i +
∑

i

∑
j

∑
k b̂2

i +
∑

i

∑
j

∑
k ε̂2

i

SSTotal = SSA + SSB + SSE
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CHAPTER 4. MULTIFACTOR DESIGNS 112

• The full model allows differences between Types to vary across levels
of Delivery

• The reduced/additive model says differences are constant across levels
of Delivery.

Therefore, the reduced model is appropriate if

(µIA − µIIA) = (µIB − µIIB) = (µIC − µIIC) = (µID − µIID)

How can we test for this? Consider the following parameterization of the
full model:

Interaction model:

Yijk = µ + ai + bj + (ab)ij + εijk

µ = overall mean;

a1, . . . , at1 = additive effects of factor 1;

b1, . . . , bt2 = additive effects of factor 2.

(ab)ij = interaction terms = deviations from additivity.

The interaction term is a correction for non-additivity of the factor effects.
This is a full model: It fits a separate mean for each treatment combination:

E(Yijk) = µij = µ + ai + bj + (ab)ij

Parameter estimation and ANOVA decomposition:

yijk = ȳ··· + (ȳi·· − ȳ···) + (ȳ·j· − ȳ···) + (ȳij· − ȳi·· − ȳ·j· + ȳ···) + (yijk − ȳij·)

= µ̂ + âi + b̂j + ˆ(ab)ij + ε̂ijk

Deciding between the additive/reduced model and the interaction/full model

is tantamount to deciding if the variance explained by the ˆ(ab)ij’s is large or
not.
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CHAPTER 4. MULTIFACTOR DESIGNS 116

– E(MSAB) = σ2 + rτ 2
AB > σ2.

This suggests

• An evaluation of the adequacy of the additive model can be assessed
by comparing MSAB to MSE. Under H0 : (ab)ij = 0 ,

FAB = MSAB/MSE ∼ F(t1−1)×(t2−1),t1t2(r−1)

Evidence against H0 can be evaluated by computing the p-value.

• If the additive model is adequate then MSEint and MSAB are two
independent estimates of roughly the same thing (why independent?).
We may then want to combine them to improve our estimate of σ2.

Df Sum Sq Mean Sq F value Pr(>F)
pois$deliv 3 0.20414 0.06805 28.3431 1.376e-09 ***
pois$type 2 0.34877 0.17439 72.6347 2.310e-13 ***
pois$deliv:pois$type 6 0.01571 0.00262 1.0904 0.3867
Residuals 36 0.08643 0.00240

For these data, there is strong evidence of both treatment effects, and little
evidence of non-additivity. We may want to use the additive model.

4.1.4 Inference for additive treatment effects

Consider a two-factor experiment in which it is determined that the effects
of factor F1 and F2 are large. Now we want to compare means across levels
of one of the factors.

Recall in the pesticide example we had 4 reps for each of 3 levels of Type
and 4 levels of Delivery. So we have 4× 4 = 16 observations for each level of
Type.

The wrong approach: The two-sample t-test is

ȳ1·· − ȳ2··

s12

√
2/(4× 4)

For the above example,

• ȳ1·· − ȳ2·· = 0.047
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CHAPTER 4. MULTIFACTOR DESIGNS 119

(population) means:

F2 = 1 F2 = 2 F2 = 3 F2 = 4

F1 = 1 µ̄11· µ̄12· µ̄13· µ̄14· 4µ̄1··
F1 = 2 µ̄21· µ̄22· µ̄23· µ̄24· 4µ̄2··
F1 = 3 µ̄31· µ̄32· µ̄33· µ̄34· 4µ̄3··

3µ̄·1· 3µ̄·2· 3µ̄·3· 3µ̄·4· 12µ̄···

So

a1 − a2 = µ̄1·· − µ̄2··

= (µ̄11· + µ̄12· + µ̄13· + µ̄14·)/4− (µ̄21· + µ̄22· + µ̄23· + µ̄24·)/4

Like any contrast, we can estimate/make inference for it using contrasts of
sample means:

a1 − a2 = â1 − â2 = ȳ1·· − ȳ2·· is an unbiased estimate of a1 − a2

Note that this estimate is the corresponding contrast among the t1 × t2
sample means:

F2 = 1 F2 = 2 F2 = 3 F2 = 4

F1 = 1 ȳ11· ȳ12· ȳ13· ȳ14· 4ȳ1··
F1 = 2 ȳ21· ȳ22· ȳ23· ȳ24· 4ȳ2··
F1 = 3 ȳ31· ȳ32· ȳ33· ȳ34· 4ȳ3··

3ȳ·1· 3ȳ·2· 3ȳ·3· 3ȳ·4· 12ȳ···

So

â1 − â2 = ȳ1·· − ȳ2··

= (ȳ11· + ȳ12· + ȳ13· + ȳ14·)/4− (ȳ21· + ȳ22· + ȳ23· + ȳ24·)/4

Hypothesis tests and confidence intervals can be made using the standard
assumptions:

• E(â1 − â2) = a1 − a2

• Under the assumption of constant variance:

V (â1 − â2) = V (ȳ1·· − ȳ2··)

= V (ȳ1··) + V (ȳ2··)

= σ2/(r × t2) + σ2/(r × t2)

= 2σ2/(r × t2)

Preview from Notesale.co.uk

Page 124 of 160
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then it will increase the variance in response and also the experimental error
variance/MSE if unaccounted for. If F2 is a known, potentially large source
of variation, we can control for it pre-experimentally with a block design.

Blocking: The stratification of experimental units into groups that are more
homogeneous than the whole.

Objective: To have less variation among units within blocks than between
blocks.

Typical blocking criteria:

• location

• physical characteristics

• time

Example(Nitrogen fertilizer timing): How does the timing of nitrogen
additive affect nitrogen uptake?

• Treatment: Six different timing schedules 1, . . . , 6: Level 4 is “stan-
dard”

• Response: Nitrogen uptake (ppm×10−2 )

• Experimental material: One irrigated field

Soil moisture is thought to be a source of variation in response.

Design:

1. Field is divided into a 4× 6 grid.

2. Within each row or block, each of the 6 treatments are randomly
allocated.

1. The experimental units are blocked into presumably more homoge-
neous groups.

2. The blocks are complete, in that each treatment appears in each block.

Preview from Notesale.co.uk

Page 132 of 160



CHAPTER 4. MULTIFACTOR DESIGNS 130

1 2 3 4 5 6

35
40

45
50

as.factor(c(trt))

c(
y)

1 2 3 4

35
40

45
50

as.factor(c(rw))

c(
y)

column

ro
w

1 2 3 4 5 6

4
3

2
1

−3.14
2

−1.52
5

−3.44
4

−3.3
1

−8.33
6

−4.7
3

2.94
1

2.65
3

5.24
4

6.92
6

2.48
5

2.66
2

1.35
6

5.91
3

−1.9
5

−1.34
1

2.62
2

−0.39
4

−2.13
2

−1.41
4

0.06
6

0.94
5

−3.86
3

1.69
1

treatment and residual versus location

Figure 4.13: Marginal plots and residuals
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Consider comparing the F-stat from a CRD with that from an RCB: Accord-
ing to Cochran and Cox (1957)

MSEcrd =
SSB + r(t− 1)MSErcbd

rt− 1

= MSB

(
r − 1

rt− 1

)
+ MSErcbd

(
r(t− 1)

rt− 1

)
In general, the effectiveness of blocking is a function of MSEcrd/MSErcb. If
this is large, it is worthwhile to block. For the nitrogen example, this ratio
is about 2.

4.3 Unbalanced designs

Example: Observational study of 20 fatal accidents.

• Response: y = speed in excess of speed limit

• Recorded sources of variation:

1. R =rainy (rainy/not rainy)

2. I =interstate (interstate/two-lane highway),

cell means sum marginal means
interstate two-lane

rainy 15 5 130 13
r11 = 8 r12 = 2 r1· = 10

not rainy 20 10 120 12
r21 = 2 r22 = 8 r1· = 10

sum 160 90 250
r·1 = 10 r·2 = 10 r·· = 20

marginal mean 16 9 ȳ··· = 12.5

Lets naively compute sums of squares based on the decomposition:

yijk = ȳ··· + (ȳij· − ȳ···) + (yijk − ȳij·)

yijk = ȳ··· + (ȳi·· − ȳ···) + (ȳ·j· − ȳ···) + (ȳij· − ȳi·· − ȳ·j· + ȳ···) + (yijk − ȳij·)
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50 60 70 80
-0.90902778 -0.02569444 0.19097222 0.74375000

What linear modeling commands in R will get you the same thing?

> options(contrasts=c("contr.sum","contr.poly"))
> fit_full<-lm( y~as.factor(ageg)*as.factor(trt))

> fit_full$coef[2:4]
as.factor(ageg)1 as.factor(ageg)2 as.factor(ageg)3

-0.90902778 -0.02569444 0.19097222
> fit_full$coef[5:6]
as.factor(trt)1 as.factor(trt)2

0.5347222 0.5826389

Note that the coefficients in the reduced/additive model are not the same:

> fit_add<-lm( y~as.factor(ageg)+as.factor(trt))
>
> fit_add$coef[2:4]
as.factor(ageg)1 as.factor(ageg)2 as.factor(ageg)3

-0.7920935 -0.3607554 0.3070743
> fit_add$coef[5:6]
as.factor(trt)1 as.factor(trt)2

1.207447717 -0.001899274

4.3.1 Non-orthogonal sums of squares:

Consider the following ANOVA table obtained from R:

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(ageg) 3 13.355 4.452 0.9606 0.42737
as.factor(trt) 2 28.254 14.127 3.0482 0.06613 .
Residuals 24 111.230 4.635

It might be somewhat unsettling that R also produces the following table:

> anova( lm( y~as.factor(trt)+as.factor(ageg)) )
Df Sum Sq Mean Sq F value Pr(>F)

as.factor(trt) 2 31.588 15.794 3.4079 0.0498 *
as.factor(ageg) 3 10.021 3.340 0.7207 0.5494
Residuals 24 111.230 4.635
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This is actually what R presents in an ANOVA table:

> ss0<-sum( lm( y~1 )$res^2 )
> ss1<-sum( lm( y~as.factor(ageg) )$res^2 )
> ss2<-sum( lm( y~as.factor(ageg)+as.factor(trt) )$res^2 )
> ss3<

> s0-ss1
[1] 13.3554
>
> ss1-ss2
[1] 28.25390
>
> ss2-ss3
[1] 53.75015

> ss3
[1] 57.47955

> anova( lm( y~as.factor(ageg)*as.factor(trt)) )
Df Sum Sq Mean Sq F value Pr(>F)

as.factor(ageg) 3 13.355 4.452 1.3941 0.27688
as.factor(trt) 2 28.254 14.127 4.4239 0.02737 *
as.factor(ageg):as.factor(trt) 6 53.750 8.958 2.8054 0.04167 *
Residuals 18 57.480 3.193

Why does order of the variables matter?

• In a balanced design, the parameters are orthogonal, and SSA =
SSA|B , SSB = SSB|A and so on, so the order doesn’t matter.

• In an unbalanced design, the estimates of one set of parameters depends
on whether or not you are estimating the others, i.e. they are not
orthogonal, and in general SSA 6= SSA|B , SSB 6= SSB|A.

I will try to draw a picture of this on the board.

The bottom line: For unbalanced designs, there is no “variance due to
factor 1” or “variance due to factor 2”. There is only “extra variance due
to factor 1, beyond that explained by factor 2”, and vice versa. This is
essentially because of the non-orthogonality, and so the part of the variance
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Randomization:

Sulfur type was randomized to whole plots;

Potato type was randomized to subplots.

Initial data analysis: Sixteen responses, 4 treatment combinations.

• 8 responses for each potato type

• 8 responses for each sulfur type

• 4 responses for each potato×type combination

> fit.full<-lm(y~type*sulfur) ; fit.add<-lm(y~type+sulfur)

> anova(fit.full)
Df Sum Sq Mean Sq F value Pr(>F)

type 1 1.48840 1.48840 13.4459 0.003225 **
sulfur 1 0.54022 0.54022 4.8803 0.047354 *
type:sulfur 1 0.00360 0.00360 0.0325 0.859897
Residuals 12 1.32835 0.11070

> anova(fit.add)
Df Sum Sq Mean Sq F value Pr(>F)

type 1 1.48840 1.48840 14.5270 0.00216 **
sulfur 1 0.54022 0.54022 5.2727 0.03893 *
Residuals 13 1.33195 0.10246
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