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We can interpret these as follows. The lim sup of An is the set of events that are 

contained in infinitely many of the An (but not necessarily in all the An past a 

point – the event could “bounce in and out” of the An) 

{ } { }:  i.o.lim sup
nn n

A Aw wÎ W Î=  

Similarly, the lim inf of An is the set of events that eventually appear in an An 

and then in all An past that point. 

{ } { }:  ev.lim inf
n n n

AA w wÎ W Î=  

Clearly, if an event is in the lim inf, it also appears infinitely often (because it 

appears in all the An past a point, and so l lim supim inf
n nn n

A AÍ . 

Remark: Take { } { }, ev. lim inf
n n n

A A= . Then 

{ }
( ){ }

{ }

,  ev.

lim inf

,  i.o.

cc

n nm n

c

nm n

c

nm n
c

n n

m

m

c

n

m

A A

A

A

A

A

³

³

³

é ù= ê úë û

=

=

=

=

 
 
  

o Proposition: Let { }n
A  be a sequence of measurable sets, then 

 ( ) ( )lim inf lim inf
n n n n
A A£   

 ( ) ( )lim sup lim sup
n n n n
A A³   

(The first statement can be thought of as a generalization of Fatou’s Lemma for 

probabilities). 

Proof of (i): Let us define 
m nmn

B A
³

=  . Then we know that 

1m m
BB +Í Í Í  . In other words, the sets Bm increase monotonically to  

lim inf
m n nm n m nm

B B A A
³

= = =    

Since the events are increasing, a simple form of monotone convergence gives us 

that ( ) ( )n
B B  . But we also have that 

( ) ( )m n
B A n m£ ³   
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But we have that 

( ) ( )
0

c c
n nm n m n mm

A A
³ ³

£

=
å     

As required.  

 Notions of convergence 

o Definition (convergence almost surely) 
n

X X  almost surely if 

{ }: ( ) ( ) 1
n

X Xw w wÎ W  =  

More generally, { }n
X  converges almost surely if 

( )lim sup lim inf 1
n n n n
X X= =  

This is the notion of convergence that most closely maps to convergence concepts 

in real analysis. 
 

Let us understand these two statements intuitively 

 The first statement tells us that for every single outcome in the sample 

space W , the sequence of random variables Xn tends to X. 

 The second statement is a shorthand for the statement that 

{ }( ): lim sup ( ) lim inf ( ) 1
n n n n
X Xw w w= =  

This is, again, simply the statement in real analysis that 

lim sup lim inf
n n n n
x x=  if and only if lim

n n
x  exists 

Thus, we require the limit to exist for every outcome w . 

o Example: Consider the sequence 1 [0,1]
n n

X U= . We claim that 0
n

X   almost 

surely. 

Proof: In this case, [0,1]W = . For any w  we might drawn, we will find 

1( ) 00
n n

X w£ £   

As required.   
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this happening decreases with the number of X generated, but it is still 

possible that in certain experiments, it will happen. 

o Example: Let { }1
n n

Un
X

£
=  , where the Un are IID U[0, 1] random variables. Let 

us fix (0,1)e Î , and consider the definition 

( ) ( )
( )1

0

1

0

n n

n n

X X

U

n

e e- > = >

= £

=



 


 

This proves the Xn do indeed converge to 0 in probability. Consider, however, 

that 

( ) 1
n n n n

X e = = ¥>å å  

But since our Xn are independent, we know by the second BC Lemma that 

{ },  i.o.
n

X e>  almost surely. So Xn cannot be converging to 0 almost surely. 

Note, on the other hand, that if we replaced our 1/n by 1/n2, we would find 

(using the first Borel-Cantelli Lemma) that Xn does indeed converge to 0 almost 

surely.  

o Claim:  a.s.  as  
n n p

XX X X n   ¥ . As our example shows, however, 

the converse is false. 

Proof: Recall that convergence almost surely can be written as 

( )  i.o. 0
n

X X e- > =
 

or in other words 

{ }( )lim sup 0
n n

X X e- > =
 

We have, however, that l lim supim inf
n nn n

A AÍ . As such 

{ }( )
( )

lim inf 0

 e.v. 0

n n

n

X X

X X

e

e

- > =

- > =




 

This naturally implies that eventually the probability of large deviations falls to 0 

– this is the definition of convergence in probability.  
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Now, pick some k 

( )
( )

lili mm in

lim min[

f

, ]
n m

m

n

n

Y

Y

X

k
¥

¥

³

³


  

The absolute value of the variable of which we are taking an expectation is now 

bounded by k, because the Xn are positive, and so Ym is positive. So we can apply 

bounded convergence: 

( )
( )
lim min[ , ]

min[

lim in

, ]

f
n mn

Y

k

X k

Y
¥³

=


  

As k  ¥ , the last line tends to ( ) (lim inf )
n n

Y X=  .  

o Theorem (DOM – Dominated Convergence): Let { }n
X  be a sequence of 

random variables such that 
n

X Y£  with ( )Y <¥  and 
n

X X  almost 

surely, then ( ) ( )
n

X X  . 

Proof: Since 
n

X Y£ , we have that 0
n

Y X+ ³  and 0
n

Y X- ³ . Applying 

Fatou’s Lemma to both variables, we obtain 

( ) ( ) ( ) ( )ll iim min nfi f
n n n n

Y X Y X Y X Y X+ ³ + - ³ -     

Since Y has finite expectation, we can subtract ( )Y  from both sides above, and 

obtain 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

lim inf

lim su

lim inf

lim inf p
n n nn

n nn n

X X X X

X X X X

³ - ³ -

³ £

   
     

Together, the last two lines imply that lim ( ) ( )
nn

X X  .  

o Theorem (MON – Monotone Convergence): Let { }n
X  be a sequence of 

random variables such that 
1 2

0 X X£ £ £  almost surely, then 

 
n

X X  (possibly ¥) almost surely. 

 ( ) ( )
n

X X   (possibly ¥). 

Proof: Since Xn > 0, we can apply Fatou’s Lemma, to get 

( ) (limlim inf inf ) ( )
nn n

X X X³ =    

However, the fact that Xn < X also gives ( ) ( ) lim inf ( ) ( )
n n n

X X X X£  £    . 

These two statements together imply that lim ( ) ( )
nn

X X  .  
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This is the characteristic function of 2(0, )N s , and it is continuous at 0q = . 

Thus, all the conditions of Levy’s Theorem hold, which proves the central limit 

theorem. 
 

All we now need to do is to prove that 0
n

nR   as n ¥ . To do this, first 

note the following standard result from deterministic analysis proof?!? 

0

1
2

( 1)!

( )

!!

n
n

n

ix

m

n
x xix

e
nm n=

+æ ö÷ç ÷ç ÷ç£  ÷ç ÷ç ÷+ ÷ç ÷çè ø
-å  

Here, min( , )a b a b = . Let us apply expectations 

0

1
2

( 1)! !

( )

!

n n
n

nix

m

ix
e

x x

n nm

+

=

æ ö÷ç ÷ç ÷ç£  ÷ç ÷ç ÷+ ÷ç ÷ç
-

è ø
å   

Now, use Jensen’s Inequality on the LHS to obtain 

( )
2 2

2

0

2( )
( , )

! 3! 2

m
i X

m

X XiX
e f X

m
q

q qq
q

=

æ ö÷çæ ö ÷ç÷ç ÷ é ù÷ çç- £  =÷÷ ç ê ú÷ç ë û÷ ç÷ ÷çè ø ÷ç ÷çè ø
å     

Now, observe that if 0q  , ( , ) 0f X q   almost surely, since X  is bounded. 

Similarly, note that ( , )f X q  is bounded by 
2 2X q , and since 

2 2X s= < ¥ , 

we can say that ( , )f X Yq £  with Y <¥ . We can therefore apply the 

dominated convergence theorem to conclude that 

( , ) 0 as 0f X q qé ù  ê úë û  

More details? 

But we have  

( )

3

3

2
2

3
2

2

( , )

3!

3!

n

n

n

n
f X

X
n X

n

R

n

X
X
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q

q

q
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o Definition (Stopping time): Suppose T is a non-negative integer-valued random 

variable. Then T is said to be a stopping time with respect to an underlying 

sequence { }n
X  if, for each k > 0, 

{ } ( )0
, ,

k kT k
f X X

=
=   

Where fk is a deterministic function. In other words, we require 

{ } k
T kk= Î "  

o Example (Hitting Times): Let { }0 :inf
n

T n X A³ Î= . We then have 

{ } { }0 1, , ,k kT k X A X A X A-= Ï Ï Î
=


   

Similarly, we would define { }0 :inf
n

T n S A³ Î= , and we would then have 

{ } { }0 1, , ,k kT k S A S A S A-= Ï Ï Î
=


   

o Proposition (Wald’s First Identity): Let Sn be a random walk 
1

n

n ii
S X

=
= å , 

with S0 = 0, and let T be a stopping time with respect to the sequence { }n
  

(where 
1

( , , )
n n

XXs=  ) 

 If 0
i

X ³ , then 
1

( ) ( ) ( )
T

S T X=    [this could, of course, we infinity]. 

 If 
i

X <¥  and ( )T < ¥ , then 
0

( ) ( ) ( )
T

S T X=    

Proof: Let { }1 1

T

T i ii i i T
S X X

¥

= £=
= =å å  . We then have 

{ }( )1
)(

T i ii T
S X

£

¥

=
= å    

Now, let us do both parts: 

 First part: Xi > 0, and indicators are always positive, so by Fubini I, we 

can interchange the expectation and the sum: 

{ }( )1
)(

T i ii T
S X

£

¥

=
=å    

Consider, however, that  

{ } { }

{ }1

1

1
T i T i

T i

³ <

£ -

= -

= -

 
  

This implies that { } 1iT i -³
Î  . Going back to our sum 
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o Example: Let { }n
X  be IID, with ( ) 1

i
X =  and 

i
X <¥ . And let 

1

n

n ii
M X

=
= . This is a martingale: 

 Condition 1 satisfied. 

 
1

n

n ii
M X

=
= <¥   

 Conditioning 

( ) ( )
( )

( )

1 11

1

11

1 1

1

| |

|

|

n

n n i ni

n

n i ni

n n n

n

M X

X X

M X

M

- -=

-

-=

- -

-

=

=

=
=




 




 





 

It is quite astounding, therefore, that even this process can be written as the sum 

of uncorrelated increments! 

 Optional Stopping Theorem for Martingales 

o Question: If T is a stopping time, when is it true that 
0

( ) ( )
T

M M=  ? This is 

the question that will be concerning us in this section. Let us consider some 

simple examples. 

o Example: Let 
n n

M S nm= - , with M0 = 0 and 
1

( )X m= . When is it the case 

that 
0

( ) ( ) 0
T

M M= =  ? Effectively, we are asking when it is the case that 

( ) ( )
T

S Tm=   

This is precisely the subject matter of Wald’s First Identity.  

o Expample: Let 2 2
n n

M S ns= - , with 2 2
1 1

( ) 0, ( )X X s= = <¥  . When is it 

true that 
0

( ) ( ) 0
T

M M= =  ? Effectively, we are asking when it is the case that 

2 2( ) ( )
T

S Ts=   

This is precisely the subject matter of Wald’s Second Identity.  

o Proposition: Let  { }0:
n

M n ³  be a martingale with respect to { }n
 , and let T 

be a stopping time. Then for each m > 1 

( ) ( )0T m
M M =   

Where min( , )T m T m = . 
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LECTURE 6 – 24th February 2011 

o Proof: Let { }iD  be the martingale differences, and write 

{ }

01

01

T n

T n ii
n

ii T i

M D M

D M



 =

= ³

= +

= +

å
å 

 

Take expectations 

{ }( ) ( )01
)(

T i

n

T n ii
M D M = ³

= +å     

We know, however, that { } 1iT i -³
Î   

{ }( ) ( )

{ } ( ) ( )
( )

01

01

1

1

0

)( |

|

n

iT i

i

T n ii

n

iT ii

M D M

M

D M

-³

-

 =

= ³

= +

= +

é ù
ê úê úë û

=

é ù
ê úë û

å
å

    

   




  

As required.  

Remark: Consider that 

 Consider that lim
n T Tn

M M¥  . As such, lim
n T n T

M M¥ 
é ù é ù=ê ú ê úë û ë û  . 

 By the theorem above, however, 
0T n

M M
é ù é ù=ê ú ê úë û ë û  , which implies than 

0
lim

T nn
M M ¥
é ù é ù=ê ú ê úë û ë û  . 

Thus, every optional stopping theorem boils down to the following interchange 

argument – if we can make the interchange, then 
0T

M Mé ù é ù=ê ú ê úë û ë û  : 

lim lim
n T n n T n

M M¥  ¥ 
é ù é ù=ê ú ê úë û ë û   

o Corollary I: Let ( )0:
n

M n ³  be a martingale with respect to { }n
  and T be a 

stopping time such that T is bounded (in other words, there exists a K <¥  

such that ( ) 1T K< = ), then 
0

( ) ( )
T

M M=  . 

o Corollary II: Let 
T n

M Z £ , with ( )Z <¥ . Then by dominated 

convergence, the interchange holds and 
0

( ) ( )
T

M M=  . 

o Corollary III: Let ( )0:
n

M n ³  be a martingale with respect to { }n
  and T be 

a stopping time such that ( )T <¥ . Provided the martingale differences are 

uniformly bounded (
1

|
i i

D C-
é ù £ <¥ê úë û  ), then 

0
( ) ( )

T
M M=  . 
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Proof: Let ( )
n n

M X= f  for an f that satisfies the assumption of the proposition. 

The main question here is one of uniqueness, since it is clear that a constant 

vectors can solve Pf = f. Let us first show that Mn is a martingale: 

 ( )
n n

M X c= £f   

 
1

( , , )
n n n

XM XsÎ =   (in fact, it only depends on the last Xn). 

 
1 1 1 1

| ( ) | ( ) ( )
n n n n n n

M X X P X X- - - -
é ù é ù= = =ê ú ê úë û ë ûf f f   

As such, { }0:
n

M n ³  is a martingale with respect to { }n
 . Note that 

1
sup

n n
M³ <¥ , because we have assumed that f is bounded. Thus, 

n
M M¥  almost surely. Suppose there exists ,x y Î   such that 

( ) ( )x y<f f  

Since { }0:
n

X n ³  is irreducible and recurrent 

( ) a.s.

lim sup

li

( ) ( ) a.s.

m inf ( )

n

n n

n

x

f X y

f X £

³

f

f
 

This means, however, that lim inf ( ) lim sup ( )
n n n n

XX ¹ ff , which contradicts the 

convergence statement.  

LECTURE 7 – 2nd March 2011 

 Stochastic stability4 

o Deterministic motivation: Consider a dynamical system X(t) for which 

d ( ) ( ( )) dX t f X t t= , with :f    (this can be thought of as the “equation of 

motion” of the system). 
 

Now, consider an “energy” function :g +  , with 

( )
0

d ( )

d

g X t

t
e e£- >  

                                         
4 Some parts of this topic were covered at the end of the previous lecture. For expositional purposes, we 

chose to present the material here instead. 
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This is effectively a statement of the fact the energy of the system is “forced” 

down to 0, since it is “constantly decreasing” As such, 
0
( , )t x e$  such that 

( )( ) 0g X t =  for all 
0

t t³ ; in other words, our dynamical process is “pushed” 

towards a “stable” state. 

o We now need to adapt this idea to a discrete stochastic process. We can write 

our “equation of motion” as 
1

( )
n n n

X X f X+ - = . To add stochasticity, we can 

write 
1 1

( , )
n n n

X Xy e+ += , where the 
i
e  are random variables. This is effectively 

the definition of a Markov process, provided 
n
e  is independent of X0. If we make 

the 
i
e  IID, the Markov process becomes time-homogeneous. 

 

Now consider the “energy” function – it would be too strong to ask for the 

energy of the process to decrease along every path. We therefore require it to 

decrease in expectation: 

1
( ) ( ) |

n n n
g X g X X e+
é ù- £-ê úë û  

Since we need this be true whatever state our process first starts in, we can write 

0
[ ] [ | ]

x
X x⋅ = ⋅ =  , and the condition above becomes 

1
( ) ( )

x
g X g x eé ù - £-ê úë û  

o We now specialize this to a particular stochastic process. Consider a Markov 

chain { }0:
n

X n ³  that is irreducible. We would like to know whether the chain 

has a steady state. For a finite state space, all we need is to check for solutions to 

, 1P = =1p p p  ; indeed, the existence of such a p  is associated with positive 

recurrence. If the spate space is countably infinity, however, things get slightly 

more complicated; the two equations above do not suffice, and we also require 

³0p , which makes things more complicated. Here, we attempt to find simpler 

conditions for stability to hold. 

o Proposition: Let { }0:
n

X n ³  be an irreducible markov chain on a countable 

state space k . Let K Í   be a set containing a finite number of states. Then, if 

there exists a function :g +   such that (recall 
0

[ ] [ | ]
x

X x⋅ = ⋅ =  ) 

1
( ) ( )  and some >0

x
g X g x xe e- £- " Î   
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o Set s < t and w Î W . Define ( )s
t

X w  to be the work in the system at time t given 

the system is empty at time s. For the point w  depicted above (and assuming 

1
s t< ), s

t
X  would look like this 

 

o For s s¢ < , it is clear that 

( ) ( )
t

s
t

sX X ww¢ ³  

Because this variable is non-decreasing in s, *( ) lim ( )s
t s t

X Xw w-¥=  exists. This 

is the “steady state” of the system; what we would observe if we had started the 

system a very, very long time in the past. 

o Now, define a time-shift operator tq  so that ( ) ( )s s
t t

X X t
t tq w w+

+= . As such, we 

have 

* *lim ( ) lim ( ) ( ) ( )s s
s t s t t t

X X X Xt
t t t tq w w w q w+

-¥ -¥ + += = =  

As such, * *( ) ( )
t d t

X X tw q w= . Shift invariance also holds for the starred process. 

LECTURE 8 – 23rd March 2011 

o We have seen a number of properties of *
t

X , including the fact that it exists. It 

might, however, be equal to infinity. We now look for conditions under which *
t

X  

is finite. 

o Proposition: If 1r < , then *  a.s.
t

X <¥  for all t. 

Proof: Fix t Î   and w Î W  and define 

{ }( ) sup : ( ) 0s s
t

T t Xtw t w= < =  

Intuitively, this is the last empty time before time t (this is clearly not a stopping 

time; just a random time): 

s
1
t

2
t

3
t

4
t

5
t

6
t

s
t

X
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Intuitively, this states that the average amount of work in the system at any 

given time is equal to the average number of arrivals per unit time multiplied by 

the average sojourn time. 

Proof: 

0 0
( ) d ( ) ( ) d

t t

N s s A s D s s= -ò ò  

Note that we can write 

{ }

{ }

( )

( )
n

n

t s

n s

n

d

A s

D s
£Î

£Î

=

=
å
å





1

1
 

As such 

{ } { } { }( )
n n n nn t s d s t s dn

N s
£ £ £ £Î Î

= =-å å 
1 1 1

 

(The last equality follows because any jobs that arrive after s won’t be counted 

at all, and any events that arrive and leave before s will be counted by both 

indicators and therefore cancel out). By swapping the summation and integration 

(valid by Fubini), we obtain 

{ }0 0
( ) d

Amount of time 

 d

job  was

in the system during [0, ]

n n

t t

n t s d

n

N s s

n

s

t

£ £Î

Î

=
ì üï ïï ï= í ýï ïï ïî þ

åò ò

å





1

 

We can bound this above by considering the sojourn time of all arrivals up to 

and including time t (though some of them may overrun past t) and lower bound 

it by considering the sojourn time of all job that depart before time t (even 

though some jobs that leave after t do spend some time in the system before t). 

This gives 

( ) ( )

0 00
( ) d

i

tD t A t

n ni n
N s sq q

= =
£ £å åò  

Where ni is the index of the ith job to leave the system (since we have no assumed 

FIFO processing discipline, we cannot assume that 
i

iq = ). 

 

Before we continue, we will need the following claim 

Claim: Under the two assumptions above 
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for in this case, because Mn has some structure (the fact it’s non-decreasing) that 

wn does not. However, since this is a Markov chain, a stationary distribution is all 

we could really want]. 

o If the random walk has positive drift – in other words, if  

1
( ) ( ) ( ) 0

n n n
Z S t-= - >    

– then the random walk drifts to infinity and the waiting times get infinitely 

large. This is consistent with our findings in the G/G/1 queue, since 

1
( ) ( ) 1

n n
St r+ >  <  . On the other hand, if the random walk has negative 

drift, the chain is stable and the waiting times return to 0 infinitely often almost 

surely (we motivated this result in homework 2 using a simpler reflected random 

walk). 

 The single-server M/M/1 Markovian queue 

o We now consider the most tractable of all single-server queue models; the M/M/1 

in queue. In that case, we assume the { }n
S  are IID and exponentially distributed 

with parameter m  whereas the { }n
t  are IID and exponentially distributed with 

parameter l . 

o Consider the process 

( ) Number of jobs in system at time 0 X t t= ³  

{ }( : 0)X t t ³  is a continuous-time Markov Chain with countable state space. In 

fact, it is a birth-and-death process: 

 

We now proceed to analyze this CTMC (note that ( )lim 0( ) ( ) f h

h h
f h o h ¥ == ) 

Consider t > 0 and a small h > 0. We have 

0 1 2 … 

l l l

mm m
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is continuous, every up-crossing must be followed by a down-crossing, and 

so the difference in numbers will be at most 1. 

2. Using the ergodic theorem of Markov Chains, we have 

{ }1

( ) 1
lim lim ( ) a.s.

( ) k

nj

t n k X j

D t
j

D t n
p¥ ¥ ==

= =å 1  

(The first equality follows from the fact that Xk is precisely the state of 

the system after the kth departure). 

3. Using the bound in (1), we have that ( ) 1 ( ) ( ) 1
j j j

D t A t D t£ £ +- , so 

 ( ) by (2) ( ) by (2)
1 1

( ) 1 ( ) 1( ) ( )( )

(( ) ( ) ( ) ( ))

j j

jj j
A t

A

D t D tD t D t

A t D t D t A tt

p p 
 

- +
£ £ ⋅

 

 

And so 

( )
( ) a.s.

( )
j

A t
j

A t
p  

4. Letting tk be the time of the kth arrival, we have 

{ }(1 )

( ) 1
lim lim

( ) k

nj

t n tk X j

A t

A t n¥ =¥ =
= å 1  

5. A well-known property of queues with Poisson arrivals is PASTA 

(Poisson arrivals see time averages – see addendum at the end of this 

lecture). 

{ } { }0 ( ) )1 (

1 1
lim lim d

k

t

X s j X j

n

t n k tt
s

n¥ ¥ == =
= åò 1 1  

where tk is the time of the kth arrival to the system. Effectively, this states 

that in working out the average work in the queue, we don’t need to 

sample at every time-step; it is enough to sample at arrivals. 

6. By the ergodic theorem for Markov Chains 

{ }.a. ( )s 0

1
ˆ( ) l m di  

t

t X s j
j

t
sp ¥ =

= ò 1  

7. Finally, combine all the above 
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Where the last step follows by Fubini, since h is bounded. Now, since h is any 

bounded function, the above implies that )( ()X t X ¥ , and finally, taking 

{ }  
( )

xx
h

⋅ =
⋅ = 1 , we recover the last required statement. 

o Example: Let ( )( : 0)X t t ³  be a positive recurrent regenerative process. Fix a 

set A SÎ , and let 

{ }( ) inf 0 : ( )X t AT A t ³ Î=  

Again, for simplicity, assume (0) 0t = . We are now interested in the expression 

( )( ) ?T A t> = , especially for t large. For t > 0, note that 

( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 1

1 10

1 1 10

1 1 10

( )

( ) , ( ) ,

( ) ( ) ,  d

( ) ( ) , ( ) |  dF

( ) ( ) , ( ) |  

)

dF

(

t

t

t

T A t

T A t t T A t t

T A t T A t s s

T A t T A t T A s s

T A t T A t s T

t

A s s

a

t t

t t

t t t

t t t

>

= > > + > £

é ù=  > + > =ê úë û
é ù=  > + > > =ê úë û
é ù=  > + > - >

=

=ê úë û

ò
ò
ò 


 
 

 

 

 

Where { } { }( ) inf (1), 0( , ( (1))) infT A t X At t X t Att Î ³ += > = Î . Now 

( ) ( ) ( )
( )

( ) ( ) ( )

1 1 10

1

1 1 10

0

( ) ( ) ( ) |  dF

( )

( ) | ( ) ( )  dF

( ) ( )  dF

( )
t

t

t

T A t T A t s T A s s

T A t

T A t s

a t

s T A T A s

b t a t s s

t t t

t

t t t

b

é ù > + > - > =ê úë û
é ù=  >ê úë û

+ > - = > >

= +

=

-

ò

ò
ò 

  


  
 

Where 

( )1 1
| (( ) )s s T AF t t£= >   

So 

( )a b a Fb= + *  

For fixed l Î  , 

0

( )

0

0

( ) ( ) ( ) d ( )

( ) ( ) ( )  d ( )

( ) ( ) ( ) d ( ) d ( ) d ( )

t
t t t

t
t s s

t
s

a t e b t e e a t s F s

a t b t e a t s e F s

a t b t a t s F s F s e F s

l l l

l l
l l

l
l l l l l

b

b b

b

-

= + -

= + -

= + - =

ò
ò
ò







 

Suppose  s.t.l$  Fl  is a bona-fide distribution. Then 

0
( ) 1  d ( )sF e F sl

l b
¥

¥ = = ò   
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( )1

0
 d ( )s Ze F esl lb

¥
- = =ò    

Assume there is such a solution *l  [can show using hyeristic argument]. By 

appealing to the key renewal theorem 

( ) ( )1

1

1 0

0
( )  d

 d (

1
(

)

) s T A s s

x F x

a t e t
l

l

l
l

l

t h
t

t

¥

¥

é ù >ê úë û =  ¥

= ò

ò 



 

And so 

{ }( )( ) ~ tT A ea t t lh ->=   

So the probability has an exponential type tail.  
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