Applying the result above gives an exponential approximation. (It is, by the way, summable, so we automatically recover the SLLN).

• Theorem (Azuma's Inequality): Let $\{Z_n\}$ be a zero-mean martingale with bounded MG differences (ie: $-\alpha \leq Z_i - Z_{i-1} \leq \beta$ for $\alpha, \beta \geq 0$). Then

$$\mathbb{P} \Big(\bigcup_{n=m}^{\infty} \left| Z_n \right| > n \varepsilon \Big) \leq 2 \exp \! \left(- \frac{2m \varepsilon^2}{(\alpha + \beta)^2} \right)$$

This bound is not as tight as the CLT's, but it requires less.

- **Example:** $S_n =$ number of heads in n flips, where $\mathbb{P}(\text{Heads}) = p \cdot Z_n = S_n np$ is a martingale with $-p \leq Z_i - Z_{i-1} \leq 1 - p$. As such, we can use Azuma's inequality and obtain $\mathbb{P}\left(\bigcup_{n=m}^{\infty} \left|\frac{S_n}{n} - p\right| > \varepsilon\right) \leq 2\exp\left(-2m\varepsilon^2\right)$.
- **Definition (Doob Martingale)**: Let X be a random variable in \mathbf{L} and \mathcal{F}_n be a set of filtrations. Then $X_n = \mathbb{E}(X | \mathcal{F}_n)$ is a martingale \mathbf{O} **Proof:** $\mathbb{E}(X_{n+1} | \mathcal{F}_n) = \mathbb{E}[\mathbb{E}(X | \mathcal{F}_{n+1}) | \mathcal{F}_n] = \mathbb{E}[\mathbb{E}(X | \mathcal{F}_n) = X_n.$
- Let $\mathbf{X} = (X_1, \dots, X_n)$ where the X_i are independent and with CDF F_i . Define $\mathcal{F}_i = \sigma(X_1, \dots, X_i)$. Finally, let $\alpha : \mathbb{N}^n \to \mathbb{R}$ such that, if \mathbf{x} differs from \mathbf{y} in only one component $|h(\mathbf{x})| \mathbf{C}_i(\mathbf{y})| \leq \ell$, for some $\ell \geq 0$. Then $S_i = \mathbb{E}[h(\mathbf{X}) \mid \mathcal{F}_i]$ is a Doob martingale. Provided we can prove $|S_i S_{i-1}| \leq \ell$, we can apply Azuma's Inequality with $\alpha + \beta = \ell$ to $S_n = h(\mathbf{X})$

$$\mathbb{P}\left(\left|h(\boldsymbol{X}) - \mathbb{E}\left[h(\boldsymbol{X})\right]\right| > n\varepsilon\right) \le 2\exp\left(-\frac{n\varepsilon^2}{2\ell^2}\right)$$

Proof: To prove $\left|S_{_{i}}-S_{_{i-1}}\right|\leq \ell$, note that

$$\begin{split} S_i &= \mathbb{E}\Big[h(\boldsymbol{X}) \mid \mathcal{F}_i\Big] = \int_{x_{i+1}} \cdots \int_{x_n} h\Big(X_1, \cdots, X_i, x_{i+1}, \cdots, x_n\Big) \mathrm{d}F_n(x_n) \cdots \mathrm{d}F_{i+1}(x_{i+1}) \\ S_{i-1} &= \int_{x_i} \cdots \int_{x_n} h\Big(X_1, \cdots, x_i, x_{i+1}, \cdots, x_n\Big) \mathrm{d}F_n(x_n) \cdots \mathrm{d}F_{i+1}(x_{i+1}) \,\mathrm{d}F_i(x_i) \end{split}$$

As such, remembering that densities integrate to 1

$$\begin{split} \left| S_{i} - S_{i-1} \right| &\leq \int \cdots \int \left| \begin{array}{c} \left| \right| \, \mathrm{d} \cdots \\ &\leq \ell \int \cdots \int 1 \, \mathrm{d} \cdots \\ &= \ell \end{split} \end{split}$$

As required.

This second argument is *incorrect*, because in going from the first to the second line, we condition B_t on the past while ignoring that we are at the same time condition B_t on the future (because we are conditioning on $B_1 = 0$).

- Martingales Associated with Brownian Motion
 - Recall that in continuous time, the martingale property reads, for all t > s, 0 $\mathbb{E}(X(t) \mid \mathcal{F}_s) = X(s)$. Defining a stopping time is more tricky; if T satisfies $\{T \leq t\} \in \mathcal{F}_t,$ then since \mathcal{F} is anincreasing family, $\left\{T < t\right\} = \bigcup_{n=1}^{\infty} \left\{T \le t - \frac{1}{n}\right\} \in \mathcal{F}_t$. However, if T only satisfies $\left\{T < t\right\} \in \mathcal{F}_t$, then $\left\{T \leq t\right\} = \bigcap_{n} \left\{T < t + \frac{1}{n}\right\} \notin \mathcal{F}_{t}$ (again, since the family is increasing). To conclude this, we need to assume right-continuity of the filtration.
 - *Theorem*: The following three processes are martingales: 0
- $\{B_t^2 t\}$ (the "variance marting **COUK** $\{\exp(\theta P_t \frac{1}{2}e^{2t})\}$ where θ is a derministic **oof**. The form parameter (the

Proof: The first to pats are trivial. For the last, recall that $\mathbb{E}(e^{\theta N(0,1)}) = e^{\theta^2/2}$ and $\mathbb{E}\left(e^{\theta B_t - \frac{1}{2}\theta^2 t} \mid \mathcal{F}_s\right) = \left(e^{\theta B_s - \frac{1}{2}\theta^2 t}\right) \mathbb{E}\left(e^{\theta (B_t - B_s)} \mid \mathcal{F}_s\right) = \left(e^{\theta B_s - \frac{1}{2}\theta^2 t}\right) \mathbb{E}\left(e^{\theta [N(0,1)]\sqrt{t-s}}\right).$

The exponential martingale can be used to generate many other martingales. Let 0

$$f(heta;t,x) = e^{ heta x - rac{1}{2} heta^2 t} = \sum_{n=0}^{\infty} rac{ heta^n}{n!} H_n(t,x)$$

Where H_n is the n^{th} Hermite polynomial, $H_n(t,x) = f^{(n)}(0;t,x)$. Feeding this into the martingale property and exchanging summation and expectation, we can use the fact that this holds for any θ including $\theta = 0$, and conclude that for each n, $\left\{H_n(t, B_t)\right\}$ is also a martingale.

- We can apply the Optional Stopping Theorem to these martingales to get some 0 interesting results.
- **Example**: Define $T = \inf \{ t : B_t = -a \text{ or } b \}$. Using the mean martingale, we can 0 find $p_{_b} = a \,/\,(a+b)$. Using the variance martingale, we can find $\mathbb{E}(T) = ab$.

- **Example:** Let $X_t = \mu t \sigma B_t$, with $\mu, \sigma > 0$; this could be seen as the "net 0 demand up to time t", where σB_t is a production process. We are interested in $T = \inf \left\{ t : X_t = b > 0 \right\}$ (the first time stock depletes). $\mathbb{E}(T) = \frac{b}{\mu}$ is easily found using the mean martingale on B_T . Use the variance martingale for $\mathbb{V}ar(T) = \frac{\sigma^2 b}{\mu^3} \square$
- **Example:** $X_t = \mu t + \sigma B_t$, $T = \inf\left\{t : X_t \not\in (-a, b)\right\}$. Use $e^{\theta B_T \frac{1}{2}\theta^2 T} = e^{\theta \frac{X_T \mu T}{\sigma} \frac{1}{2}\theta^2 T}$. 0 Choose $\theta = -2\mu / \sigma$, and use the OST (stopped martingale is bounded); $\mathbb{E}(e^{\frac{\theta}{\sigma}X_T}) = 1. \text{ Directly gives } p_b \text{ and } p_a \text{. Use OST on } B_T = (X_T - \mu T) \, / \, \sigma \ \text{ to find}$ $\mathbb{E}(T)\,. \text{ Can let } \mu < 0 \ \text{ and } \ a \to -\infty \ \text{and find } \ \mathbb{P}\Big(\sup_{t} X_t \geq b \Big) = e^{-2b\mu/\sigma^2}\,.$

Example: Following from the above example and letting $T = \inf \{t : X_t = b\}$, 0 suppose we want $\mathbb{E}(e^{-\gamma T})$. Write $-\gamma T = \theta B_T - \frac{1}{2}\theta^2 T - \beta b$.

- Use the OST on $\exp(\theta B_{T \wedge t} \frac{1}{2}\theta^2 [T \wedge t]) \leq \exp(\theta B_T)$ thoused.) Substitute $b = \mu T + \sigma B_T$ and equate coefficients of T and B_T .

Ito's Formula
• For a deterministic (1),
$$ax_t = \dot{x} dt$$
 and $df(x_t) = f'(x_t) dx_t + \frac{1}{2} f''(x_t) (dx_t)^2 + \cdots$,
but $t C^2 = \dot{x}^2 (dt)^2$ which can
 $df(B_t) = f'(B_t) dB_t + \frac{1}{2} f''(B_t) dt$
 $f(B_t) = f(0) + \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds$

This is Ito's Formula. The first integral above is called Ito's Integral and can be approximated as

$$\int_{0}^{t} \boldsymbol{X}_{s} \ \mathrm{d}\boldsymbol{B}_{s} \approx \sum\nolimits_{i=1}^{n} \boldsymbol{X}_{t_{i-1}} \Big[\boldsymbol{B}_{t_{i}} - \boldsymbol{B}_{t_{i-1}} \Big]$$

This is a martingale transformation, and is therefore a martingale under boundedness and predictability (\Leftarrow left-continuity) of X_t . Furthermore, as a martingale, the mean of the integral is 0. To find its variance, consider

$$\mathbb{E}\left(\int_{0}^{t} X_{s} \mathrm{d}B_{s}\right)^{2} \approx \mathbb{E}\left(\sum_{i=1}^{n} X_{t_{i-1}}\left[B_{t_{i}} - B_{t_{i-1}}\right]\right)^{2} = \sum_{i=1}^{n} \mathbb{E}(X_{t_{i-1}}^{2})(t_{i} - t_{i-1}) \approx \mathbb{E}\left(\int_{0}^{t} X_{s}^{2} \mathrm{d}s\right)$$

Where we have used orthogonality of martingale differences, and conditioned on $\mathcal{F}_{t_{i-1}}$. This is knows as *Ito's Isometry*. More generally, for a bivariate f(t, x)

$$\begin{split} p &= \mathbb{P}\Big((X_0, X_1, \cdots) \in A\Big) \\ &=_{A \text{ shift invariant}} \mathbb{P}\Big((X_0, X_1, \cdots) \in A, (X_n, X_{n+1}, \cdots) \in A\Big) \\ &\to_{\text{mixing}} \mathbb{P}\Big((X_0, X_1, \cdots) \in A\Big) \cdot \mathbb{P}\Big((X_0, X_1, \cdots) \in A\Big) \\ &= p^2 \end{split}$$

And so p must be equal to 0 or 1.

- **Example:** Let $X_0 = Y$ w.p. p and Z w.p 1 p, where $Y, Z \in L_1$. Consider two cases:
 - o If $X_n \equiv X_0$, $\overline{X} = Y$ w.p p and Z w.p 1 p
 - $\text{o} \quad \text{If} \ X_{_n} =_{_d} X_{_0} \,, \ \overline{X} = \mathbb{E}(Y) \text{ w.p } p \text{ and } \mathbb{E}(Z) \text{ w.p } 1 p \\$

Neither case is ergodic.

PART IV – STOCHASTIC ORDERS

Introduction

The Hazard Rate of a random variable
$$J$$
 with $|e^{t}F_{T}|$ is

$$\lambda_{X}(t) = \dim_{Q} \mathbb{P}[W \in (t, t + dt) | dt > t] = \underbrace{O(t)}{\overline{F}(t)} \qquad t \ge 0$$
As such
$$\lambda_{X}(t) = \frac{d}{dt}[-\ln \overline{F}(t)] \qquad \overline{F}(t) = \exp\left(-\int_{0}^{t} \lambda_{X}(s) ds\right)$$

X follows the exponential distribution $\overline{F}(t) = e^{-t/\mu}$ if and only if $\lambda_{X}(t) = \frac{1}{\mu}$. $\textit{Example: If } W = \max(X,Y) \,, \, \text{then } \ \overline{F}_{\!_W} = \overline{F}_{\!_X} \overline{F}_{\!_Y} \,, \, \text{and } \ \lambda_{\!_W} = \lambda_{\!_X} + \lambda_{\!_Y} \,.$

- Assume X and Y have densities F and G. We define the following variable orderings
 - *Likelihood ratio ordering*: $X \ge_{LR} Y$ if $\frac{f(y)}{f(x)} \le \frac{g(y)}{g(x)}$ for all $x \ge y$. 0
 - **Hazard rate ordering**: $X \geq_{\text{HR}} Y$ if $\lambda_{X}(x) \leq \lambda_{Y}(x)$ for all x. 0
 - **Stochastic ordering**: $X \geq_{st} Y$ if $\overline{F}(x) \geq \overline{G}(y)$ for all x. 0
 - Increasing convex ordering: $X \geq_{\text{ICX}} Y$ if $\mathbb{E}[\phi(X)] \geq \mathbb{E}[\phi(Y)]$ for all increasing 0 and convex functions $\phi(x)$,
- **Theorem:** $X \ge_{\text{LR}} Y \Rightarrow X \ge_{\text{HR}} Y \Rightarrow X \ge_{\text{ST}} Y \Rightarrow X \ge_{\text{ICX}} Y$