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Applying the result above gives an exponential approximation. (It is, by the way, 

summable, so we automatically recover the SLLN). 

o Theorem (Azuma’s Inequality): Let { }n
Z  be a zero-mean martingale with 

bounded MG differences (ie: 
1i i

Z Z ba --- £ £  for 0,a b ³ ). Then 
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This bound is not as tight as the CLT’s, but it requires less. 

o Example: Sn = number of heads in n flips, where (Heads) p= . 
n n

Z S np= -  is 

a martingale with 
1

1
i i

p Z Z p-- £ - £ - . As such, we can use Azuma’s 

inequality and obtain ( ) ( )22 exp 2nS

nn m
p me e

¥

=
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o Definition (Doob Martingale): Let X be a random variable in L1 and 
n
  be 

a set of filtrations. Then ( )|
nn

X X=    is a martingale. 

Proof: ( ) ( ) ( )1 1
| | | |

n n m n n n
X X X X+ +

é ù = =ê= úë û       .  

o Let 
1

( , , )
n

X X=X  , where the Xi are independent and with CDF Fi. Define 

1
( , , )

i i
X Xs=  . Finally, let : nh    such that, if x differs from y in only 

one component, ( ) ( )h h- £x y  , for some 0³ . Then ( ) |
ii

hS é ùê úë û= X   is a 

Doob martingale. Provided we can prove 
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S S -- £  , we can apply Azuma’s 

Inequality with a b+ =   to ( )
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Proof: To prove 
1i i

S S -- £  , note that 
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As such, remembering that densities integrate to 1 
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As required.  

Preview from Notesale.co.uk

Page 11 of 28



Stochastic Processes II  Page 19

 

 
Daniel Guetta

This second argument is incorrect, because in going from the first to the second 

line, we condition Bt on the past while ignoring that we are at the same time 

condition Bt on the future (because we are conditioning on B1 = 0).  

 Martingales Associated with Brownian Motion 

o Recall that in continuous time, the martingale property reads, for all t > s, 

( )( ) | ( )
s

X t X s=  . Defining a stopping time is more tricky; if T satisfies 

{ } t
T t£ Î  , then since   is an increasing family, 

{ } { }1
1 tnn

T tt T
¥

=
= £ -< Î  . However, if T only satisfies { } t

T t< Î  , then 

{ } { }1
tnn

T T tt = < +£ Ï   (again, since the family is increasing). To 

conclude this, we need to assume right-continuity of the filtration. 

o Theorem: The following three processes are martingales: 

 { }tB  (the “mean martingale”) 

 { }2
t

B t-  (the “variance martingale”) 

 ( ){ }21
2

exp
t

B tq q- , where q  is a deterministic parameter (the 

“exponential martingale”). 

Proof: The first two parts are trivial. For the last, recall that ( ) 2(0,1) /2Ne eq q=  

and ( ) ( ) ( ) ( ) ( )2 2 21 1 1
2 2 2( ) [ (0,1)]| |t s st s

B t B t B tB B N t s

s s
e e e e e
q q q q q qq q- - -- -= =    .  

o The exponential martingale can be used to generate many other martingales. Let 

21
2

0
( ; , ) ( , )

!

n
x t

nn
f t x e H t x

n

q q q
q

¥-

=
= = å  

Where Hn is the nth Hermite polynomial, ( )( , ) (0; , )n
n

H t x f t x= . Feeding this into 

the martingale property and exchanging summation and expectation, we can use 

the fact that this holds for any q  including 0q = , and conclude that for each n, 

{ }( , )
n t

H t B  is also a martingale. 

o We can apply the Optional Stopping Theorem to these martingales to get some 

interesting results. 

o Example: Define { }inf :  or 
t

T t B a b= =- . Using the mean martingale, we can 

find / ( )
b

p a a b= + . Using the variance martingale, we can find ( )T ab= .  
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o Example: Let 
t t

X t Bm s= - , with , 0m s > ; this could be seen as the “net 

demand up to time t”, where 
t

Bs  is a production process. We are interested in 

{ }inf : 0
t

T t X b= = >  (the first time stock depletes). ( ) bT
m

=  is easily found 

using the mean martingale on BT. Use the variance martingale for 
2

3
ar( ) bT s

m
=  

o Example: 
t t

X t Bm s= + , { }( )inf ,:
t

T t X a bÏ -= . Use 
2 21 1

2 2

X TT
TB T T

e e
m

s
q q q q

-
- -= . 

Choose 2 /q m s=- , and use the OST (stopped martingale is bounded); 

( ) 1TX
e

q
s = . Directly gives pb and pa. Use OST on ( )/

T T
B X Tm s= -  to find 

( )T . Can let 0m <  and a -¥  and find ( ) 22 /sup b
t t

bX e m s-=³ .  

o Example: Following from the above example and letting { }inf :
t

T t X b= = , 

suppose we want ( )Te g- . Write 21
2T

T B T bg q q b- = - - . 

 Use the OST on 21
2

exp ] exp(( ) )[
T t T t

B T t Bq q q  £-  [bounded.] 

 Substitute 
T

b T Bm s= +  and equate coefficients of T and BT. 

 Ito’s Formula 

o For a deterministic xt, d  d
t

x x t=   and 21
2

d ( ) ( )d ( )(d )
t t t t t

f x f x x f x x¢ ¢¢= + + , 

but 2 2 2(d ) (d )
t

x x t=   which vanishes. In BM, 2(d ) ~ d
t

B t , and so 
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d ( ) ( ) d ( ) d
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( ) (0) ( ) d ( ) d

2

t t t t

t t

t s s s

f B f B B f B t

f B f f B B f B s

¢ ¢¢= +

¢ ¢¢= + +ò ò
 

This is Ito’s Formula. The first integral above is called Ito’s Integral and can be 

approximated as 

1 110
 d

i i i

n

t t

t

s s ti
X B BX B

- -=
é ù» -ê úë ûåò  

This is a martingale transformation, and is therefore a martingale under 

boundedness and predictability (  left-continuity) of Xt. Furthermore, as a 

martingale, the mean of the integral is 0. To find its variance, consider 

( )
1 1 1

2 2
2 2

11 10 0
d ( )( ) d

i i i i

t tn n

s s t t t t i i si i
X B X B B X t t X s

- - - -= =

æ ö æ öé ù÷ ÷ç ç» - = - »÷ ÷ç çê ú÷ ÷ç çë ûè ø è øå åò ò     

Where we have used orthogonality of martingale differences, and conditioned on 

1it -
 . This is knows as Ito’s Isometry. More generally, for a bivariate f(t, x) 
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( )
( )

( ) ( )

0 1
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mixing 0 1 0 1
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And so p must be equal to 0 or 1.  

 Example: Let 
0

 w.p.  and  w.p 1X Y p Z p= - , where 
1

,Y Z LÎ . Consider two cases: 

o If 
0n

X Xº ,  w.p  and  w.p 1X Y p Z p= -  

o If 
0n d

X X= , ( ) w.p  and ( ) w.p 1Y p Z pX = -   

Neither case is ergodic. 

PART IV – STOCHASTIC ORDERS 

Introduction 

 The Hazard Rate of a random variable X with CDF F is 

d 0

( )
( , d ) | 0

(
l m

)
( ) i

X t

f t
X t t t X tt t

F t
l 

é ùÎ + > = ³ê úë û=   

As such 

0

d
( ) ln ( ) ( ) exp ( ) d

d

t

X X
t F t F t s s

t
l l

æ öé ù ÷ç= - = - ÷çê ú ÷çë û è øò  

X follows the exponential distribution /( ) tF t e m-=  if and only if 1( )
X

t
m

l = . 

Example: If max( , )W X Y= , then 
W X Y

F F F= , and 
W X Y
l l l= + .  

 Assume X and Y have densities F and G. We define the following variable orderings 

o Likelihood ratio ordering: 
LR

X Y³  if 
)

(

(

) )

(

(

)

f g

x

y

f g

y

x
£  for all x > y. 

o Hazard rate ordering: 
HR

X Y³  if ( ) ( )
X Y

x xl l£  for all x. 

o Stochastic ordering: 
ST

X Y³  if )( ()F x G y³  for all x. 

o Increasing convex ordering: 
ICX

X Y³  if ( ) ( )X Yf fé ù é ù³ê ú ê úë û ë û   for all increasing 

and convex functions ( )xf , 

 Theorem: 
LR HR ST ICX

Y X Y X Y X YX ³  ³  ³  ³  
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