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FOUNDATIONS OF OPTIMIZATION 

Basics 

 Optimization problems 

o An optimization problem is 

minimise ( ) subject to f Îx x   

f is the objective (real)   is the constraint set/feasible set/search space. 

o *x  is an optimal solution (global minimizer) if and only if 

* ( )( )f f£ " Îx xx   

o Maximizing f(x) is equivalent to minimizing –f(x). 

o We consider problems in the following form 

minimize ( )

subject to (  

( ) 0  
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o We consider the following subsets of the problem 

 In linear programming, all functions are linear. 

 In convex programming, the f and g are convex, and the h are linear. 

o If   is the feasible set of a problem, a point Îx   is a local minimum if there 

exists a neighborhood ( )
r

N x  such that ( )  ( () )
r

f f N£ " Î Çy yx x . It is an 

unconstrained local minimum if ( ) (  ) ( )
r

f Nf £ " Îy y xx . (Strict equivalents 

exist). 

 Topology 

o An open ball around a point nÎx   with radius r > 0 is the set 

{ }:( ) n
r

rN Î -= <x y x y , where 2

i
x= åx . 

o A point nÎ Ìx   is an interior point if there exists an open ball such that 

( )
r

N Ìx  . A set nÌ   is open if int=  . 
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o Definition: A function is convex if ( )2 1 21
((1 ) ) (1 ) ( )f f fl l l l+ + -- £x x xx . It 

is strictly convex if the inequality is strict for 
21

¹x x . We say f is convex over 

dom f=  if it is convex when restricted to  . f is (strictly )concave if –f is 

(strictly) convex. 

o Definition: If f is convex with a convex domain  , we define the extended-

value extension { }: nf  È ¥   by 

( ) if 
( )

otherwise

f
f

ìïï= íï ¥ïî

Îx x
x


 

and we let 

{ }dom : ( )nf fÎ= < ¥x x   

An extended-value function is convex if 

 Its domain is convex. 

 The standard convexity property holds. 

o Given nÌ  , the indicator function { }: nI  È ¥ 


 as 

0 if 
( )

otherwise
I

ìïï= íï¥ïî

Îx
x




 

If   is a convex set, then I

 is a convex function. 

o Theorem: If f is convex over a convex set nÌ  , then every sublevel set 

{ }: ( )f gÎ £x x  is a convex subset of n . The converse is not true (eg: log x 

on (0, )¥ ). However, we define… 

o …Definition: A extended real valued function }: {nf  È ¥   is quasiconvex 

if, every one of its sublevel sets (ie: for every g Î  ) is convex. 

 Calculus 

o A function :f    with nÌ   is differentiable at intÎx   if there exists a 

vector ( ) nf Îx  , known as the gradient, such that 

( ) (
i

)
l m 0

()f f f


 ⋅+ - -
=

d 0

x d x

d

x d
 

And 
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( ) **(0 ( )) ( )+   =d u h x h 0x    

But since *( )Îd x , we also have that *( ) =d h x 0 , and so (0) =u 0 , and 

(0) =x d , as required. 

o [It will be useful for later to note that if ( )⋅h  is twice continuously differentiable, 

then so is ( )⋅x . Though I’m not quite sure how to prove that result]. 

We now have our elusive curve! Let’s now prove the theorem. 

o * *( ) ( )Ìx x  : choose *( ) \ { }Î xd 0  and let x(t) be the curve discussed 

above. Take a sequence (0, ), 0
k k

t ttÌ  , so that *( )
k
t ¹x x . Then, by the mean 

value theorem, there is some [0, ]
k

t tÎ  such that 

*

* *

( ) (0)

( )

( ) (

( )( )

/

( )

)

0
kk

k

k k k

t

t t

t
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t

t- =

-

- -

-

=

x x

x

x

x x

x x x x


  

As 0
k

t   and therefore 0t  , this tends to 

(0)

(0)
 =

x d

x d




 

So *( )Îd x . 

o * *( ) ( )Ìx x  : consider *( ) \ { }Î xd 0  and an associated sequence { }
k

x  in 

the feasible set, as defined in the definition of *( )x . By the mean value 

theorem, there is some *[ , ]
k

Îx x x  such that 

**( ) ( () ( ) )
kk

 -- = hh x h x xx x   

But since *x  and every 
k

x  are in the feasible set, *( ) ( )
k

= =h x h x 0 , and 

* * *

*

*

*

( ) ( ) ( ) ( )0 ( ) (

( )

( )

)

0

k k k k

k

k

k

k

 - =  -

-


= = +

=
-

  =

h x x x h x x x

x x
h x

x x

h x h x

h x d 0

 



 





 

And so *( )Îd x . 

{Done! Take a deep breath!} 

 Theorem – necessary condition: If *x  is a local minimum that is a regular point, 

then there is no descent direction that is also a first order feasible variation: 
* *( ) 0  ( )f ⋅ = " Îx d d x  
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o Find the set of non-regular points 

o Choose the point with the lowest objective. 

For example, consider the problem 

3

2 2 21
1 2 3 1 2 32

min ( ) s.t 3. x x x x x x
Î

+ + + + £-
x 

 

The objective and constraints are continuously differentiable, and minima exist (by 

coerciveness). The Lagrangian is 

( ) 2 2 21
1 2 3 1 2 32

, , ( ) ( 3)x x x x x xm= + + + + + +x l m  

The first-order conditions are 

( )* * *

*

* *

, ,

( )

( ) 0

x

j j
gm

 =

£

=

x 0

g x 0

x

l m

   







   

* * * * * *
1 2 3

* * *
1 2 3

* * * *
1 2 3

0

3

( 3) 0

x x x

x x x

x x x

m m m

m

+ = + = + =

+ + £-

+ + + =

 

The solution is * ( 1, 1, 1)= - - -x  and * 1m =  which satisfies 0m ³ . Furthermore, all 

points are regular, so this is the global minimum. 

 Theorem (KKT Sufficient Conditions): Assume that f, h and g are twice 

continuously differentiable, and that * * *, ,n m rÎ Î Îx l m    satisfy 
* * * * *

* * *

2 * * * EQ *

( , , ) ( ) ( )

0 ( )

( , , ) 0 ( ) \ { }

x

j

xx

jm

 = = £

³ = " Ï

 > " Î

x 0 h x 0 g x 0

0 x

d x d d x 0

l m
m

l m





 

 

Assume also that 

* *( )0
j

jm Î> " x  

Then *x  is a strict local minimum. 

Proof: We follow the equality case. Suppose *x  is not a strict local minimum. Then the 

exists * *{ } , ( ) , ( ,) ,
k k

n

kk k
Ì £ ¹ = 0 xx x xh g xx 0 x  with *( ( ))

k
f f£ xx . We define 

*

*

k
k

k

-
=

-

x x
d

x x
   *

k k
d = -x x  

Without loss of generality, assume 
k
d d . Using the same mean-value-theorem 

argument as in the sufficient conditions proof for Lagrange multipliers, we find that 

*( ) =h x d 0 . 
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( ) ( )
( ) ( ) ( )
( )

ˆ ˆ

ˆ ˆ ˆ

ˆ

ˆ

k k k

k k k k k

k k

k k

k k k

³ - ⋅
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⋅
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More succinctly 

( ) ( )ˆ constantˆ
kk kk k

³ - ⋅ = " Î- ⋅x x x x x x x   

In other words,   lies on one side of each of those hyperplanes. 
 

But now, set 

ˆ

ˆ
k k

k

k k

-
=

-

x x

x x
m  

Then the equation above can be written as 

,
kk k

k x³ ⋅ Î⋅ "xxm m   

Since 1
k

=m , the sequence { }
k

m  is bounded has a non-zero subsequential limit 

m . Letting k  ¥ , we get 
k
m m  and 

k
x x , so 

,k"⋅ ³ ⋅ Îx xxm m   

As required. 

o Theorem (separating hyperplane): Let 
1 2
, nÎ    be two disjoint non-empty 

convex sets. Then there exists a hyperplane that separates them; ie: a vector 

, 0nÎ ¹m m  and a scalar b Î   with 

1 2 21 2 1
,b£ £ ⋅ " Î⋅ Îx x x xmm    

 

Proof: Consider the convex set 

{ }1 2 1 2 1 1 2 2
: ,x x x x= - = - Î Î      

1


m

2

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Since the two sets are disjoint, Ï0  . Thus, by the supporting hyperplane 

theorem, there exists a vector ¹0m  with 

( )1 2 1 1 2 2
,£ - " Î Îx x x0 xm    

Setting 
2 2 2

supb Î=
x

xm


, we obtain the desired result. 

o Theorem (strictly separating hyperplane): Let nÌ   be a closed convex 

set and Ïx   a point. Then there exists a hyperplane that strictly separates the 

point and the set. In other words, \ {0},n b$ Î Îm    such that 

infb Î⋅ < < ⋅
x

x xm m
  

 

Proof: Define minr Î= -
x

x x


. This will be > 0 because   is closed, and 

Ïx  . Now, let { }/: 2n r= Î £-x xx  . Clearly,   and   are disjoint, so 

we can apply the separating hyperplane theorem. Diagramatically: 

 

o Corollary: If n  is a closed convex set, then it is the intersection of all 

closed halfspaces that contain it. 

Proof: Let   be the collection of all closed halfspaces containing  , and let 

H
H H

Î
= 

. 

 

Since n¹  , the strictly separating hyperplane theorem implies that   is non-

empty (since there is a point nÎx   and Ïx  ) and clearly, C HÌ . 
 

Now, suppose there exists an HÎx  with ¹x  , then 



m

x




m

x
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inf ( , )LÎWx
x m  considers the highest intercept for planes that contain the 

whole of   in one of their halfpsaces. 

Proof: 

1. The hyperplane is the set ( , )wz  satisfying 

( ) ( )w f⋅ + = ⋅ +z g x xm m  

Clearly, if z = 0, we must have ( , )w L= x m . 

2. The hyperplane with normal ( ,1)m  that intercepts the axis at level c is 

the set ( , )wz  with 

w c⋅ + =zm  

If   lies in the positive halfspace, then 

( , ) ( ) ( )L f c³ " Î W= ⋅ +x g x x xm m  

Thus, the maximum intercept is inf ( , )LÎWx
x m . 

3. We need to show that * *inf ( , )f LÎW=
x

x m . It is obvious from part (2) 

that this is true if and only if among all hyperplanes with normal *( ,1)m , 

the highest interception with the vertical axis is at f*. 

o Theorem: Let *m  be a geometric multiplier. Then *x  is a global minimum if 

and only if *x  is feasible and 

** * *argmin ( , ) ( ) 0 1
j j

L j rÎWÎ = " £ £
x

x g xx m m  

Geometrically, the first statement is that x* is, indeed, the value of x that 

minimizes L at that value of m  (and recall that * *inf ( , )f LÎW=
x

x m ), and the 

second is that either x* is on the boundary of the feasible set (in which case we 

can “improve no further”) or that the geometric multiplier is horizontal (in which 

case the minimum is attained on the interior of the feasible set). 

      ( )g x

( )f x


m

( )g x

( )f x



m
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(We do not need to check for regularity, since the constraints are linear). 
 

Now, since ( , )x m  is convex and * *( )f A + =x 0m , we have that 

** argmin ( , )nÎ
Î

x
xx m


  

As such 

{ }* * *( ) min ( ) ( ) ( )nf f A q
Î

= + - =
x

x x x bm m


  

By weak duality, however, we have that 

* * **( )) (q fq f£ £ £ xm  

However, by the previous statement, * *( ) ( )f q=x m , equality holds throughout, 

and so * *f q= . 

o Extension to equality constraints: The above trivially extends to linear 

equality constraints. More generally, consider the problem 

min ( ) s.t. , ( )n f A
Î

£=
x

x x b g x 0


 

With Lagrangian 

( , , ) ( ) ( ) ( )f A= + - +x x x b g xl m l m   

(With ³0m  and l  unrestricted). 
 

Then, provided that 

 There exists an optimal solution *x  

 f and g are continuously differentiable 

 There exists multipliers * *( , )l m  satisfying the KKT conditions (ie: some 

sort of regularity). 

 f and g are convex over n  

Then there is no duality gap and geometric multipliers exists. 
 

(Note that we are effectively requiring inequality constraints to be convex and 

equality constraints the be linear. One way to look at this requirement is as a 

requirement that   be convex. Indeed, since m  is positive, ( )g xm  is convex for 

all g. Since l  can take any value, however, it needs to multiply a linear function 

to retain convexity). 

o Theorem (Slater’s Condition): Consider the problem  
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