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FOUNDATIONS OF OPTIMIZATION

Basics

e Optimization problems
0 An optimization problem is
minimise f(z) subject to x € C
fis the objective (real) C is the constraint set/feasible set/search space.
0 « is an optimal solution (global minimizer) if and only if
flz) < fw) vzecl
0 Maximizing flz) is equivalent to minimizing —f(x). u\(
0 We consider problems in the following form \e C *

mlmncléze KD‘L S )
P @6” consider the @;@%as of the problem

= In lmear programming, all functions are linear.
* In convex programming, the fand g are convex, and the h are linear.

0 If C is the feasible set of a problem, a point x € C is a local minimum if there
exists a mneighborhood N (x) such that f(z)< f(y) Yy CNN (x). It is an
unconstrained local minimum if f(x) < f(y) Yy € N (z). (Strict equivalents
exist).

e Topology

0 An open ball around a point x€R" with radius r > 0 is the set

N (x) = {y eR": Hm — y“ < r}, where ”:c” = \/Ziacf .

0 A point xe€ & CR" is an interior point if there exists an open ball such that

N (x)C&E. Aset ECR" is openif £ =1int&.
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0 Definition: A function is convex if f()\a;l +(1- /\)wQ) SAM(z) +F A= N)f(x,). It
is strictly convex if the inequality is strict for @ = x,. We say fis convex over
X =dom f if it is convex when restricted to X . fis (strictly )concave if —f is
(strictly) convex.

0 Definition: If fis convex with a convex domain X, we define the extended-

value extension f:R" — RU{co} by

- f(x) ifeeX
flx) = .
00 otherwise
and we let
domf:{meR" :f(:n)<oo}
An extended-value function is convex if K
= Tts domain is convex. O u

= The standard convex1ty property a{ a\e

0 Given C C R", the mdz%a‘tg( U{oo} as
{1O° 1| £ 90
e\N otherwise

; ( if Cisa convex 9 is a convex function.

0 Theorem: If f is convex over a convex set C C R", then every sublevel set
{m eC: flx) < *y} is a convex subset of R". The converse is not true (eg: log z
n (0,00) ). However, we define...
0 ...Definition: A extended real valued function f:R" — RU{oco} is quasiconvez
if, every one of its sublevel sets (ie: for every v € R) is convex.
e Calculus
0 A function f: X — R with X C R" is differentiable at x € int X if there exists a

vector Vf(x) € R", known as the gradient, such that

pon @+ )= (@) = Vi@)d _
Ja]

And
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(d7 +(0) Vh(z') | Vh(z') = 0
But since d € V(z'), we also have that d'Vh(z )= 0, and so %(0)= 0, and
#(0) = d, as required.
0 [It will be useful for later to note that if h(-) is twice continuously differentiable,
then so is (). Though I'm not quite sure how to prove that result].

We now have our elusive curve! Let’s now prove the theorem.

0 |V(z')cT(z)|: choose decV(x)\{0} and let =(t) be the curve discussed

above. Take a sequence ¢, C (0,7),t, — 0, so that x(t ) = # . Then, by the mean

value theorem, there is some ¢ € [0, ] such that

a(t,) - (@ZKU@—W

(t,)—
g e L co- vk
As t, — 0 and therefore ¢ — 0, this tends ga
(oM “Luw(zﬁ 50
e 1P

deT(z')\ {0} and an associated sequence {z,} in

T

the feasible set, as defined in the definition of 7(z'). By the mean value
theorem, there is some & € [z, @ | such that

h(z)—h(z')=Vh(z) (z, — )
But since  and every @, are in the feasible set, h(z,) = h(z' ) = 0, and

0=h(z,)=h(z' )+ VhE ) (z, —z)=Vh(z) (z, - )
]

Vh(,) =0

*

|z, =
— Vh(z')'d=0
Andso d€V(z).
{Done! Take a deep breath!}

e Theorem — necessary condition: If z is a local minimum that is a regular point,
then there is no descent direction that is also a first order feasible variation:

Vi) -d=0 VdeVz)
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0 Find the set of non-regular points
0 Choose the point with the lowest objective.
For example, consider the problem
min__ L@l +z +ad)st.o +a,+3,<-3
The objective and constraints are continuously differentiable, and minima exist (by
coerciveness). The Lagrangian is
E(m,)\,u) =1(af + 2 +2))+ ux, +z, + 2, +3)
The first-order conditions are
Vzﬁ(a}*,)\*,u*) =0 = a:: —I—,u* = x; —i—,u* = x; —f-,u* =0
gz’ )<o0 = z 4+, +z, <3
u;gj(a:*):o = pz, +z,+z,+3)=0
The solution is & = (—1,—1,—1) and g =1 which satisfies p 6 U more, all
points are regular, so this is the global minimum. \e
e Theorem (KKT Sufficient Coﬂ Q@%me that f, h and g are twice

continuously d1fferent1%e Q ﬁ%@w satisfy
gr g(z’)

<0

P(e\l\e\Nvage ’2 i =0Vjg Az)

d>0 vd € V*(z')\ {0}
Assume also that
p, >0 Vi€ A(z)
Then  is a strict local minimum.
Proof: We follow the equality case. Suppose x is not a strict local minimum. Then the
exists {z,} CR",h(z,)=0,9(z,) <0,z =z &, —x with f(z,)< f(z'). We define

$ —$ *
wk—ZB

5 =

k

Without loss of generality, assume d_— d. Using the same mean-value-theorem
argument as in the sufficient conditions proof for Lagrange multipliers, we find that

Vh(z')'d=0
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(ﬁ’k_mk> T Z(Ak_ k)'i'k
:(ik_ k) (zﬁk_mk)_F(ik_mk) T,
2(3}/;_ k)mk
More succinctly
(ﬁzk—wk)-wz(:izk—mk)-mk = constant Ve el

In other words, C lies on one side of each of those hyperplanes.

But now, set

B, = a::k —
[&. =]
Then the equation above can be written as
B, T> T, Vk,zeC

Since Hp,k” =1, the sequence {p,k} is bounded has a nonéﬁq&&qﬁtial limit

i . Letting k — oo, we get pu, — p a{de'csa\g

As requ1r<<|1>| X O«\ %g)) O“ %6 N

separatzrg Let C,C, € R" be two disjoint non-empty
P( convex sets. T en exists a hyperplane that separates them; ie: a vector
peR" =0 and a scalar b € R with

pox <b<p-z, Ve, €C,z, €C,

O

Proof: Consider the convex set

D=C—C={2—2,:2€Cu1eC}

17772

Daniel Guetta

~
—



Foundations of Optimization Notes Page 34

Since the two sets are disjoint, 0 ¢ D . Thus, by the supporting hyperplane
theorem, there exists a vector p = 0 with
0§uT<ml—m2) Ve, € C,x, €C,

17572

Setting b =sup__, uT.'I:2 , we obtain the desired result.
0 Theorem (strictly separating hyperplane): Let C CR" be a closed convex
set and € C a point. Then there exists a hyperplane that strictly separates the

point and the set. In other words, 3pu € R" \ {0},b € R such that

pT<b<inf _,p-x

Proof. Define r=min__, |z ﬂg§be > 0 because C is closed, and

z §Z C. Now, le‘iax&" e A:B“ 6“2 6ery, C and C are disjoint, so

\i
hN—C
0 Corollary: If CCR" is a closed convex set, then it is the intersection of all

closed halfspaces that contain it.

Proof. Let H be the collection of all closed halfspaces containing C, and let
= nHeHH

Since C = R", the strictly separating hyperplane theorem implies that H is non-

empty (since there is a point # € R" and = & C) and clearly, C C H.

Now, suppose there exists an ® € H with z = C , then

—
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inf _, L(x, ) considers the highest intercept for planes that contain the
whole of S in one of their halfpsaces.
Proof
1. The hyperplane is the set (z,w) satisfying
poz+w=p-g(z)+ f(z)

Clearly, if z = 0, we must have w = L(z, ).

2. The hyperplane with normal (u,1) that intercepts the axis at level ¢ is
the set (z,w) with

p-zt+w=c
If S lies in the positive halfspace, then
L, 1) = - glz) + f<m> >0 Vo e

Thus, the maximum intercept is inf U\(

3. We need to show that f° =inf _ $ \@_1 ous from part (2)
that this is true if andﬂ}@‘t@'

the hlg]ﬁ‘ ondwith the v u%@ is at /.

(o] gﬁ( be a érnA‘gnQplier. Then = is a global minimum if
P ( an only if x

x argmmmEQL(a;, w) ujgj(m*) =0 Vi<j<r

hyperplanes with normal (p',1),

Geometrically, the first statement is that a is, indeed, the value of @ that
minimizes L at that value of p (and recall that f =inf_, L(z,p")), and the
second is that either = is on the boundary of the feasible set (in which case we
can “improve no further”) or that the geometric multiplier is horizontal (in which

case the minimum is attained on the interior of the feasible set).
() f(x)
A N \

L >

—> =l
=
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(We do not need to check for regularity, since the constraints are linear).

Now, since L(x, ) is convex and Vf(z )+ Ap = 0, we have that

x € argminwewﬁ(w, w)

As such

f@)=min__ {f(@)+p" (A2 —b)} = q(p")

By weak duality, however, we have that

*

qu)<q <f <fla)

However, by the previous statement, f(x )= q(u’), equality holds throughout,

andso f =¢ .

0 Extension to equality constraints: The above trivially extends to linear

equality constraints. More generally, consider the problem u\(

(Wlth

preY

min__, f(z) s.t. Az =b, @(C
1es&

With Lagrangian
S(g : "g()
é\éN xx/\dumrestmtﬂ’( +)\'€16®L g

e R0

There exists an optimal solution '

fand g are continuously differentiable

There exists multipliers (A", ) satisfying the KKT conditions (ie: some
sort of regularity).

fand g are convex over R"

Then there is no duality gap and geometric multipliers exists.

(Note

that we are effectively requiring inequality constraints to be convex and

equality constraints the be linear. One way to look at this requirement is as a

requirement that £ be convex. Indeed, since p is positive, u'g(z) is convex for

all g. Since A can take any value, however, it needs to multiply a linear function

to retain convexity).

0 Theorem (Slater’s Condition): Consider the problem
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