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The set { }0,: , ,n n m mA A ´Î = ³ Î Îx x a a a    is the cone generated by the 

columns of A. 

o Definition (extreme point): An extreme point of the convex set   is a point 

Îx   that cannot be written as a convex combination of other points in  . 

 

o Definition (Convex Combination): A convex combination of points 
1

,,
k

x x  

is a point 
1

k

i ii
l

=
= åx x , such that 0³l  and 

1
1

k

ii
l

=
=å . The set of convex 

combinations of a set points is the smallest convex set containing all the points; 

it is called the convex hull of these points. 

o Definition (Hyperplane): The set { }: , ,nn b bÎ ⋅ == Î Îa x ax     is 

called a hyperplane with normal a. The set { }:n b= Î £⋅x a x  is a closed 

halfspace, and   is its bounding hyperplane. 

o Definition (Afine set): A set n
a
Î   is an affine set if for all 
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,
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Îx x   and 

( , )l Î -¥ ¥ , 
1 2

( ) (1 )
a

l l l= + - Îx x x  . A hyperplane is an example of an 

affine set. Roughly speaking, an affine set is a subspace that need not contain the 

original. 

o Definition (Polyhedron): A polyhedron is a set which is the intersection of a 

finite number of closed hyperplanes. It is necessarily convex. If the polyhedron is 

non-empty and bounded (ie: there exists a large ball it lies inside of), it is called a 

polytope. 

o Definition (Dimension): The dimension of an affine set 
a
  is the maximum 

number of linearly independent vectors in 
a
 . 

o Definition (Supporting hyperplane): A supporting hyperplane of a closed, 

convex set   is a hyperplane   such that ¹Ç Æ   and Í  : 

Extreme point

Extreme point

Not an extreme point
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turns out that an appropriate starting point is simply the point in the polyhedron 

with the smallest number of strictly positive components. This must be a vertex, 

because if it was not, we could carry out the steps outlined above and find a 

point with fewer strictly positive components – this is a contradiction. 
 

[Note that it is not always the case a polyhedron must have vertices – for 

example, the polyhedron { }2
11

, 1: 0x xÎ ³ £x   has no vertices. However, the 

non-negativity constrains of the standard-form polyhedron ensure there is at least 

one. 

 The Fundamental Theorem 

o Theorem (Fundamental Theorem of Linear Programming): If ¹ Æ , 

then the minimum min Î ⋅
x

c x  is either attained at a vertex of   or unbounded. 

Proof: We consider two cases: 

 Case 1 –   has a recession direction d such that 0⋅ <c d : in 

that case, the problem is unbounded, because for any Îx  , 

( )( )q q q⋅ = ⋅ + = ⋅ + ⋅  -¥c x c x d c x c d  as q  ¥ . 

 Case 2 –   has no such recession direction: in that case, consider 

any point Îx  . By our Representation Theorem, we can write 

i
i

l a= +åx v d , where 0, 01,
i

l al+ ³= ³ . We then have 
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Thus, the minimum is indeed attained at a vertex. 

Simplex 

 We have thus far established that the optimum of a linear program occurs at one of the 

vertices of the feasible region. We now consider the simplex algorithm, an efficient 

method of jumping for vertex to vertex while constantly improving the objective 

function. 
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 Representation in terms of emanating directions 

o Consider a polyhedron A =x b , where , m nA B N ´é ùúû Î= êë  , and a non-degenerate 

basic solution ( )ˆ ˆ ˆ,
B N

=x x x
  , where 1ˆ

B
B-= >x b 0  and ˆ

N
=x 0 . 

o Claim: Consider the matrix 

ˆ
ˆ

ˆ0 0 0
B

N

B N B N
M M

I I

æ ö æ öæ ö æ ö÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç= = =÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç çè ø è øè ø è ø

x b
x

x
 

The last n – m columns of M–1 (ie: from column m + 1 onwards) are the 

directions of the edges of P emanating from the basic feasible solution x̂ . 

Proof: Let jh  be the jth column of M–1. Using the fact that since there is no 

degeneracy, xB has M nonzero components, and so the row is clearly from the 

second half of the matrix above, we can write, for j > m: 

1 col 

1 1 1
1

th row0 1

j

j

j j j b

B

B B N B N
M e e e

I I j

-

- - -
-

-

æ ö- ÷ç ÷ç ÷çæ ö æ ö ÷ç- - ÷÷ ÷ç ç ç ÷÷ ÷ç ç= = = = ÷ç÷ ÷ç ç ÷÷ ÷ çç ç ÷ ¬÷ ÷ç ç çè ø è ø ÷ç ÷ç ÷ç ÷÷çè ø

A

h




 

 

Now, consider moving in the direction jh  by an amount q ; ˆ( ) jq q= +x x h . This 

point is still on the polyhedron, because 

( )1 col col 

col col 

( ) ( ) ( )

ˆ
B B N

j j

j j

A B N

B B

q q q

q q

q q

-

= +

= - +

= - + =

x x x

x A A

b A A b

 

Thus, 
j

h  is indeed an edge of P, and it clearly results from increasing only one of 

the xN. 
 

For a geometric interpretation, consider that the rows of M contain the vectors 

normal to every active constraint at the BFS, and that 

1
row col 

1 0 
i j

M I jM i- - = " ¹= m M . This means that our emanating edges 

(columns of M–1) are perpendicular to every normal vector save one (along which 

we’re trying to move): 
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o We can also ascribe an economic interpretation to the dual program itself. Two 

examples: 

 In a transportation problem where each constraint corresponds to supply 

at a source or sink, the dual variables can be interpreted as the cost an 

external contractor would charge to handle the transportation of one unit 

away from a source or towards a sink. The constraint requires the total 

cost of transportation of unit material from a given source to a given sink 

be less than or equal to our cost for transportation along that path. 

 In a diet problem, where each problem corresponds to a given nutrient, 

the dual variables can be interpreted as the cost of a pill containing a unit 

amount of the said nutrient. 

 The Dual Simplex Algorithm 

o The primal simplex algorithm effectively involved jumping from solution to 

solution while maintaining primal feasibility and complementary slackness and 

looking for dual feasibility. The dual simplex algorithm does the opposite – it 

keeps dual feasibility (ie: primal optimality) and complementary slackness and 

looks for primal feasibility. 

o Consider a basis consisting of m linearly independent columns of A, with the 

following tableau: 

 

Or, in more detail: 

 

We consider a solution which might be primal infeasible (ie: some of the xB may 

be negative) but primal optimal (ie: all the reduced costs are positive). 

1 col 1 1 col nB B- -A A

 
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o Otherwise, it is a simple matter to add an extra column to the simplex tableau 

and perform a few more iterations. 

 Adding a new inequality constraint 

o Consider adding a new constraint row 1

1

m
m

b+
+³⋅a x . If *x  satisfies this 

constraint, then it is an optimal solution to the new problem. 

o If not, we introduce a new nonnegative slack variable, and re-write 

row 1

11n m
m bx +
+

+⋅ - =a x . The  matrix A is then replaced by 

row 1 1m

A
A +

é ù
ê ú= ê ú-ê úë û

0

a
 

We introduce a new basis that includes all the variables in B plus our new slack 

variable. This gives 

row 1 1m

B

B
B +

é ù
ê ú= ê ú-ê úë û

0

a
             

1

1
row 1 1 1m

B

B
B

B

-
-

+ -

é ù
ê ú= ê ú-ê úë û

0
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The basic solution is ( )* row 1 *
1

, m
B m

b+
+⋅ -x a x  – and it is not feasible, since the 

original constraint was not satisfied. 

o We want to figure out a way to add this new constraint to our tableau (which, 

recall, contains 1B A- ). First, consider the problem algebraically. We have that 

1

1
row 1 1 row 1

0

1m m
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And also that the reduced cost do not change, because the objective coefficient of 

the new slack variable is 0: 

1 1  0    0     0
B

B A B A- -é ù é ù é ù- = -ê ú ê ú ê úë û ë û ë ûc c c c     

o The above is hardly useful in terms of practically writing the new tableau. More 

informatively, we be describe the above in terms of row operations: 

 Add a new row to the tableau simply consisting of row 1     1m+é ù-ê úë ûa  

 Perform the row operations necessary to ensure that the columns of 1B A-  

that correspond to basic variables form the identity matrix. In particular, 

this involves: 

 Multiplying the row by –1, to obtain a 1 in the last column. 
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And so z is concave. 

Network flow problems 

 The network flow problem 

o Let { }( ) ( , ) : ( , )iI j i j j= Î   be the set of edges incoming into i, and 

{ }( ) ( , ) : ( , )iO i i j j= Î   be the set of edges leaving node i. Let bi the supply at 

node i, that enters from the outside. Then the network flow problem is 

( )( , ) ( , ) ( , ) ( )
min  s.t.  , 0

ij ijI jij ij ij ij ji j j i j ii O
c f f f ub j f

Î Î Î
- " Î £ £=å å å

  

o The first constraint can concisely be expressed as Af = b where each row of A 

represents a node and each column represents an arc. aij contains 1 if arc j leads 

to node i, a –1 if arc j leaves from node i, and a 0 otherwise. 

o To deal with lower bound mij on flows, simply define 
ij ij ij
f f m= - , 

ij ij ij
u u m= -  

and A= -b b m . 

o The dual of the un-capacitated problem is max   s.t. A⋅ £b p cp . 

 Due to the structure of A, we in fact have  ( , )
i j ij

p p jc i£ "- Î  . Note 

that adding or removing a constant from each pi keeps the solution 

feasible, and has to effect on the objective (because 0⋅ =1 b ). As such, 

we can assume pn = 0 

 Complementary slackness requires that 
i j

p p c- =  for all arcs on which 

something flows (ie: on which 0
ij
f ¹ ). These can therefore easily be 

calculated by setting pn = 0 and backtracking through arcs with flow. 

 The pi represent shadow prices of increasing bi by a certain amount. 

 Network flow algorithms 

o A circulation is a flow vector h such that Ah = 0. The cost of such a circulation 

is ⋅c h , and “pushing” q  units of the flow means setting q¬ +f f h . 
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