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quadratic – Schur complements allowed us to make it linear. [Similarly, 

we can bound the lowest eigenvalue: 
min

( )A s A sIl ³   ]   

 Example (portfolio optimization): Say we know 
ijij ij

UL £S £ . 

Given a portfolio x, can maximize Sx x  s.t. that constraint and 0S   

to get worst-case variance. We can add additional convex constraints 

 Known portfolio variances: 2
k k k

sS =u u  

 Estimation error: If we estimate ˆS = S  but within an 

ellipsoidal confidence interval, we have ( )ˆC aS-S £ , where ( )C ⋅  

is some positive definite quadratic form. 

 Factor models: Say p Fz d= + , where z are random factors and 

d represents additional randomness. We then have 

factor
F F DS = S + , and we can constraint each individually. 

 Correlation coefficients: ij

ii jj
ij
r

S

S S
= . In a case where we know 

the volatilities exactly, constraints on 
ij
r  are linear…  

 Example (expressing QCQP and SOCP as SDP): Using Schur 

complements, we can make these non-linear constraints linear 
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 Geometric Programming 

o A function 1 2

1 21
( ) nk k k

K a a

k nk

af c x x x
=

= åx  , with ck > 0 and 
i

a Î   is a posynomial 

(closed under +, ´). K = 1 gives a monomial (closed under ,́¸ ). 

 Posynomial Monomial Posynomial´ =  

 Posynomial Monomial Posynomial¸ =  

o A geometric program is of the form 

0
min ( ) s.t. ( 1 ( ) 1,) ,

ii
f hf £ = >xx x x 0  
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The dual function is ( , ) ( ) min (1 )
s

g A sé ù= ⋅ - + - ⋅ê úë ûx b 1l n n l . This is only 

finite if 1⋅ =1 l . So the dual is ( )* max ( , ) s.t. 1,d g= ⋅ = ³1 0l n l l . 

Provided strict feasibility holds, strong duality holds and * *p d= . So if 

the original system is infeasible (p* > 0), then there exists a 

( ) ,, 0g ³ >0l n l . Similarly, if there exists such a ( , )l n , then p* > 0… 

feasible infeasible
infeasible feasible

( , 0,, ))  (  gA = ³ ><f x 0 x b 0l n l  

 Non-strict inequalities: Consider ( ) ,A =£f x 0 x b  the program is the 

same as above, but we need the optimum to be attained so that * 0p >  if 

the system is infeasible. In that case, , ( , ) 0g³ >0 l nl  is clearly feasible. 

o Example: Consider A £x b . Then ( )  if g A=- ⋅ =b 0l l l  and o.w.-¥  The 

strong system of alternative inequalities is , 0, 0A³ = ⋅ <0 bl l l .  

o Example: Take m ellipsoids { }: ( ) 2 0 ,i i n
i i i i

f A A ++= = + ⋅ + £ Îx x x x b x c  . 

We ask if the intersection has a non-empty interior. This is equivalent to solving 

the system ( )<f x 0 . Here, ( ) ( ) ( )( ) inf 2 i i
i i i i

g Al l l= + ⋅ +å å åx
x x b x cl  . 

Differentiating, setting to 0 and using obvious notation, 1( )g Al l l l
-= - +b b cl  . 

As such, the alternative system is 1, Al l l l
-- + ³>0 b b c 0l  . 

 

To explain geometrically, consider that the ellipsoid with ( ) ( )f = ⋅x f xl  

contains the intersection of all the ellipsoids above, because if ( )f £x 0 , then 

clearly a positive linear combination of them is also < 0. This ellipsoid is empty if 

and only if the alternative is satisfied [prove by finding inf ( )f x ].  

o Example: Farkas’ Lemma: the following two systems are strong alternatives 

, 0, 0A A³ ³= ⋅ <x x 0 y y bb   

o ……………….. 

 Duality & Decentralization 

o Consider 
1 1

min ( ) s.t. ( ) ,
k ki i i

ii i

i

i
f

= =
£ Î Wå å 0 xx g x  [note: the vector g 

represents a number of inequality constraints]. The Lagrangian is

1 1
( ) ( )( , )

k ki i i

ii i
f

= =
+= ⋅å åx gx xm m . The dual is 

1
( ) ( ) s.t. 

k

ii
g g

=
= ³å 0m m m  

where ( ) inf ( ) ( )
i

i

i i i
i i

g f
ÎW

= + ⋅
x

x g xm m  
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 If bounded, ( )  Mj £ "z z z  and so ( )  :
M
ej e£ " £z z z . So 

continuous at 0, and therefore everywhere. 

 Example of a non-bounded linear functional: Let V be the space of 

all sequences with finitely many non-zero elements, with norm 

max
k k

x=x . Then ( ) max
k k

kxj =x  is unbounded because we can 

push the non-zero elements of x to infinity without changing the norm 

but making the functional grow to infinity.  

o Theorem (Riesz-Frechet): If ( )j x  is a continuous linear functional, then 

there exists a HÎz  such that ( ) ,j =x x z  

Proof: Let { }( ) 0:M j= =yy . Since the functional is continuous, M is closed. If 

M = H, set z = 0. Else, choose M ^Îg . 

( )
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( ) ( )
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( ) ( )

( )

( ) ( ) 0

( )

,

, ,

0 , ,
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j j

j j

j j

j

j j j

j

- = - =  Î




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-

= = -
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g

 

Note also that by Cauchy-Schwarz, ( )j j£  =x z x z .  

o This means that Hilbert spaces are self-dual (see later), and that we can write 

( ) ,j j=x x . 

o Theorem (Special case of the Hahn-Banach Theorem): Let M HÍ  be a 

closed subspace and 
M

j  be a continuous linear functional on M. Then there 

exists a continuous linear functional j  on H such that ( ) ( ) 
M

Mj j= " Îx x x  

and 
M

j j= . 

Proof: Easy in the case of a Hilbert space. Since M is closed, it is also a Hilbert 

space, and so M$ Îm  such that ( ) ,
M

j =x x m . Then define ( ) ,j =x x m  for 

HÎx . By the CS inequality, 
M

j j= = m .  

 Banach Spaces & Their Duals 

o A Banach space is a normed, complete vector space with no inner product. 

 C[0,1] is the space of continuous function son [0,1], with 

10
max ( )

t
t£ £=f f  
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[As we showed above, the choice of this norm ensures completeness]. An 

example of a linear functional on this space is 

1 1

0 0
( ) ( ) d ( ) d ( ) TV( )t v t v t vj = £ £ò òf x x x  

Provided the total variation of v, TV( )v <¥ , where 

1 2All partitions 0 =1< 11
TV( ) sup ( ) ( )

n

n

t t i iit
v v t v t= < -=<= -å  

 { }:
p p

¥Î= <¥x x , where 

1/

1
or sup  if 

p
p

i i iip p
x x p

¥

=

æ ö÷ç= = = ¥÷ç ÷è øåx x  

 
1

0
[0,1] : ( ) d

p

p
t t

ì üï ïï ï= <¥í ýï ïï ïî þ
òx x , with 

 
1/

1

0
( ) d 1

p
p

p
t t p

æ ö÷ç= ÷ç ÷çè
<

ø
£ ¥òf f   

o Definition: We say { }* :  is continuous linear functional on V Vj j=  is the 

dual space of V, with norm { }
*

( )sup 1:j j= £x x . ( )*

*
,V  is always a 

Banach space. 

Proof: Want to show that { }* *
n

V" Íx  with * *

*
 ,

n m
n m M ee "- £ ³x x  

converges to a point * * *lim
n n

V¥= Îx x . First fix VÎx  and note that 

* ** * *

*

*( ) ( ) ( )( )
n mn m n m

- = - £ -x xx x x x x x x x  

As such, { }*( )
n

x x  is a Cauchy sequence in  . Since   is complete, 

* *( ) lim ( )
n n¥=x x x x  exists. Define *x  pointwise using this limit. Now 

 Linearity: By linearity of expectations, *x  is linear. 

 Continuity/boundedness: Fix m0 such that *
0

*  ,
n m

n m me "- £ ³x x . 

Then by the definition of *( )x x , * *( ) ( )
m

e£-x x x x x , and 

 ( )
0 0 0

* * * * *

*
( ) ( ) ( ) ( bou d) n ed

m m m
e+£ £ + -x x x x x x x x x x   

Examples 

 We have already shown (Riesz-Frechet Theorem) that Hilbert spaces are 

self-dual. 
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o Theorem: If M XÍ , then ( )M M^ ^ = . 

Proof: Clearly, ( )M M^ ^Í . To show the converse, we’ll show that 

( )M M^ ^Ï  Ïx x . Define a linear functional f on the space spanned by M and 

x which vanishes on M so that ( )a a+ =f m x . It can be shown that <¥f , 

and so by the HB Theorem, we can extend it to some F which also vanishes on 

M. As such, M ^ÎF . However, ( ) , 01= ¹=F x F x , and so ( )M^ ^Ïx .  

 Minimum Norm Problems 

o Let us consider a vector XÎx . There are clearly two ways to take the norm of 

that vector – as an element of X or as an element of **X  (a functional on *X ). 

*

*

1
or max ,

=x
x x x  

It is clear these two should be equal, because * 1, £ ⋅x x x  (or, more 

intuitively, because the second norm finds the most x can yield under a 

functional of norm 1 – clearly, the answer is its norm). Let us now restrict 

ourselves to a subspace M of X. We can, again, define two norms 

*

*

*

1
inf or sup ,

M

M

MM ^

^

Î

Î

=
= - =

m x

x

x x m x x x  

The first simply consists of the minimum distance between x and M (as opposed 

to between x and 0). The second is the most x can yield under a functional of 

norm 1 that annihilates any element of M. Intuitively, the “remaining bit” that’s 

“not annihilated” is x – m; this is maximized when it is aligned with x* – at m0. 

So it makes sense that the two should be equal. 

o Theorem: Consider a normed linear space X and a subspace M therein. Let 

XÎx . Then 

* *

* *
* *

* *
01 1

inf max , max ,
M

M M

d
^ ^

=Î £

Î Î

æ ö÷ç ÷ç ÷ç= - = = - ÷ç ÷ç ÷÷ç ÷çè ø
m

x x

x x
x m x x x m x . 

Or, in our terminology above, 
M M^

=x x . The maximum on the right is 

achieved for some *

0
M ^Îx ; if the infemum on the left is achieved for some 

0
MÎm , then 

0
-x m  is aligned with *

0
x . 
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Intuitively, this is because at the optimal m, the residual x – m0 is aligned to 

some vector in M^ . As such, for that vector, *
0 0
,- = -x m x x m . For every 

other *x , it’ll be smaller than that. 
 

Pictorially, looking for the point on M that minimizes the norm is equivalent to 

looking for a point on M^  that is aligned with 
0

-x m . 

 

This also implies that a vector m0 is the minimum-norm projection if and only if 

there is a non-zero vector * M ^Îx  aligned with x – m0. 

o Theorem: Let M be a subspace in a real normed space X. Let ** XÎx . Then  

*

*

, 1

* *min sup ,
MM

d ^ Î £Î
= - =

xxm
x m x x  

where the minimum on the left is achieved for some *

0
M ^Îm . If the supremum 

is achieved for some 
0

MÎx , then * *

0
-x m  is aligned with x0. 

 

Because the minimum on the left is always achieved, it is always more desirable 

to express optimization problems in a dual space. 

o In many optimization problems, we seek to minimize a norm over an affine 

subset of a dual space rather than subspace. More specifically, subject to a set of 

linear constraints of the form *,
i i

c=y x . In that case, if *x  is some vector that 

satisfies these constraints, 

M^

0
-x m

x
0

m

M
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2

0 0

2

0 0
0

2

0 0
2

0

2

( ) ( ) d  d
2

( ) ( ) d ( ) d
2

( ) ( ) d ( ) d
2

( ) ( ) d ( )
2

, ( )
2

T t

T
t T

T T

T

T
x T u s s t

T
x T t u s s tu t t

T
x T T u s s tu t t

T
T t u s s x T

T
T t v x T

= -

é ù
= - -ê ú

ê úë û

= - -

- = +

- = +

ò ò

ò ò

ò ò

ò

 

Where v is the function in NBV[0,1] associated with u, as described 

above. 

 Our problem is then a minimum norm problem subject to a single linear 

constraint. We want x(T) = 1, and using our theorem, as we did above 

( )21
2

21
( 1) 2, 1

min max 1
T t aT t v T

v a T
-- = + £

é ù= +ê úë û
 

This is a one-dimensional problem. The norm is in C[0,1], the space to 

which NBV is dual. As such 
[0,1]

( ) max ( )
t

T t a T t a T aÎ- = - = , and the 

optimum occurs at a = 1/T. We then have 21
2

1 1
2, 1

min
TT t v T

v T
- = +

= + . 

Differentiating this with respect to T, we find that the minimum fuel 

expenditure of 2  is achieved at 2T = . 

 To find the optimal u, note that the optimal v must be aligned to 

( )T t a- . As we discussed above when characterizing alignment of C and 

NBV, this means that v must be a step function at t = 0, rising to 2  at 

t = 0, and as such, u must be an impulse (delta function) at t = 0. 

 Hyperplanes & the Geometric Hahn-Banach Theorem 

o Definition: A hyperplane H of a normed linear space X is a maximal proper 

affine set. ie: if H AÍ  and A is affine, then either A = H or A = X. 

o Theorem: A set H is a hyperplane if and only if it is of the form 

{ }: ( )X f cÎ =x x  where f is a non-zero linear functional, and c is a scalar. 

Proof: 

 If: Let 
0

H M= +x , where M is a linear subspace 
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