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quadratic — Schur complements allowed us to make it linear. [Similarly,
we can bound the lowest eigenvalue: A . (A4) > s < A = sl O
e Exzample (portfolio optimization): Say we know L, <X, <U,.
Given a portfolio x, can maximize z Xz s.t. that constraint and 3 > 0
to get worst-case variance. We can add additional convex constraints
e Known portfolio variances: ukTE'u,k = O'Z
e Estimation error: If we estimate ¥ =3 but within an
ellipsoidal confidence interval, we have C (E — i) < a, where C(-)
is some positive definite quadratic form.
e Factor models: Say p = Fz+ d, where z are random factors and
d represents additional randomness. then  have
WA\

ally.

Y=F% .F "4+ D, and we can co stramc 1;1
o (orrelation coe ai% In a case where we know

m eXac ly, con ai % p, are linear.. O

ey
\,\e\Nz % ( expre mé&ﬂ%é) and SOCP as SDP): Using Schur
P ( e Comple@@gan make these non-linear constraints linear

Pz

=0
(P'x)" —g-x—h| "

lz'Pr+g-z+h<0&

(g-z+h)l Fx+gq

|Fz+4q|<g-z+he (Fetq) g-zih|"

e Geometric Programming

0 A function f(x)= Zf ey e with ¢, > 0 and a, € R is a posynomial
(closed under +, x). K = 1 gives a monomsial (closed under X, ).
e Posynomial x Monomial = Posynomial
e Posynomial + Monomial = Posynomial

0 A geometric program is of the form

min f (z) s.t. f(z) <1 h(z)=1x>0
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The dual function is g(A,v) = v-(Az —b)+ min [(1 —1- )\)s] . This is only
finite if 1-A=1. So the dual is d* =(maxg(A,v)st. 1-A=1LA>0).
Provided strict feasibility holds, strong duality holds and p" =d . So if
the original system is infeasible (p° > 0), then there exists a
g(A,v)>0,A > 0. Similarly, if there exists such a (A,v), then p > 0...
f(x) <0,Az =b 20 o g(A\v)>0,A >0 b
e Nomn-strict inequalities: Consider f(z) < 0,Az =b the program is the
same as above, but we need the optimum to be attained so that p >0 if
the system is infeasible. In that case, A > 0,g(A,v) > 0 is clearly feasible.
0 Example: Consider Az <b. Then g(A)=-X-bif A'/A =0 and —oco o.w. The
strong system of alternative inequalities is A > 0,A'A =0,A-b < 0.
0 Ezample: Take m ellipsoids & = {il: f(x) = a:TAw+ t@ %A €S,

We ask if the intersection has a non—eﬁ his is equivalent to solving

.'13—1— Z(ZAibi)-mjL(Z)\ici) .
Differe e g,ﬁ(t to 0 n@;‘mus notation, g(A)=—b A 'b +c,.

P(@\L& thea]@‘a‘@&mls A>0,-bA'b +¢ >0.

To explain geometrically, consider that the ellipsoid with f(z)= X f(x)

the system f(x)

contains the intersection of all the ellipsoids above, because if f(z) <0, then

clearly a positive linear combination of them is also < 0. This ellipsoid is empty if

and only if the alternative is satisfied [prove by finding inf f(x)]. O
0 Example: Farkas’ Lemma: the following two systems are strong alternatives

Ax =b,x >0 Aly>0,y-b<0

e Duality € Decentralization
0 Consider min Zle f(@') s.t. Z g'(z')<0,x' €Q [note: the vector g

represents a number of inequality constraints]. The Lagrangian is

k k
T, ) = Zi:lf; )+ - Z g'(z'). The dual is g(u)= L 9(n)st.p>0

where g (p) =inf, f@)+p-g' (=)
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e If bounded, ‘g)(z)‘ < MHZH Vz and so ‘@(z)‘ <eVz: Hz” <=. So
continuous at 0, and therefore everywhere.

o FExample of a non-bounded linear functional: Let V be the space of

all sequences with finitely many non-zero elements, with norm

Ha:” = max, ‘wk‘. Then @(m):maxk‘kxk‘ is unbounded because we can

push the non-zero elements of @ to infinity without changing the norm

but making the functional grow to infinity. O

0 Theorem (Riesz-Frechet): If o(x) is a continuous linear functional, then

there exists a z € H such that ¢(z) = <m, z>

Proof Let M = {y tp(y) = 0}. Since the functional is continuous, M is closed. If

o(z—257) = ¢l@) — ¢(@) _0%_@& 0\)\: >
f{ ey >

et Caui.géh@(aw QA= 11-1- u .
P‘el“ms means th?f-ae
p(z) = <93 90>-
0 Theorem (Special case of the Hahn-Banach Theorem): Let M C H be a

M = H, set z= 0. Else, choose v € M".

spaces are self-dual (see later), and that we can write

closed subspace and ¢, be a continuous linear functional on M. Then there
exists a continuous linear functional ¢ on H such that o(z)= ¢, () Ve € M
wd | =Joul

Proof: Easy in the case of a Hilbert space. Since M is closed, it is also a Hilbert
space, and so 3m € M such that ¢, (z) = <w, m>. Then define p(x) = <a:, m> for
x € H . By the CS inequality, H(‘DMH = H(p” = Hm” [

e Banach Spaces € Their Duals

0 A Banach space is a normed, complete vector space with no inner product.

e (]0,1] is the space of continuous function son [0,1], with

F(t)

Hf H = Max, o
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[As we showed above, the choice of this norm ensures completeness|. An

example of a linear functional on this space is

olf)=[ (1) do(t) < | [ dv) <[ TV ()

Provided the total variation of v, TV(v) < oo, where
TV(U) = SupAll partitions 0=t, <t, <<t =1 Zi:l v(tz) - U(tifl )‘

. Ep = {:1: eR™: H:B“p < oo}, where

» /p
T v ] or Ha:” = sup, ‘xl‘ if p=o00
P

=[Sl
. ﬁp[o,u_{x: fo 1‘w(t)‘p dt<oo},with
p:{fﬂlf()‘ dt]l/p 1<p<oou\( O

0 Definition: We say V = gp @ is contg \@r-&ctlonal on V is the

dual space of V, with normM@ % A@<1 V H H is always a
Banach spac "(O
Mt to @ehﬁg CV' with H:I: —x H <eVn,m>M,

P converges to ag te =lim =z € V', First fix € V and note that

f

o)) - o~ < s~ e
As such, {:13:(:13)} is a Cauchy sequence in R. Since R is complete,

x (z) = lim x (x) exists. Define 2 pointwise using this limit. Now

e Linearity: By linearity of expectations,  is linear.

e Continuity/boundedness: Fix m, such that H:c; — a:;H <eVnm>m,.
Then by the definition of z (z), ‘w*(w) — az:b(m)‘ < s”m” , and

:1::”0 (:L‘)‘ < ( :1:*LO *)“w“ = bounded |

2 (@) <|o" (@) @, (@) +

0

Examples
e We have already shown (Riesz-Frechet Theorem) that Hilbert spaces are
self-dual.
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0 Theorem: If M C X ,then “(M")= M.
Proof. Clearly, M C*(M"). To show the converse, we’ll show that
xd M =z ¢ (M"). Define a linear functional fon the space spanned by M and
x which vanishes on M so that f(m + ax) =« . It can be shown that Hf” < o0,
and so by the HB Theorem, we can extend it to some F which also vanishes on
M. As such, F € M~. However, F(x)= <F,a:> =1=0,andso z & (M"). |

e Mintmum Norm Problems
0 Let us consider a vector € X . There are clearly two ways to take the norm of

that vector — as an element of X or as an element of X~ (a functional on X").

Hm” or maxH . <m, m*>

It is clear these two should be equal, because <

or, more

intuitively, because the second norm flnds \@)s can y1eld under a

functional of norm 1 — clea&i@‘;@ is 1t norm). Let us now restrict
ourselves to a sﬂa@ﬂ-\ We can tage two norms

P(e\,\e inf d@m%B or supMM <m,m*>

The first simply consists of the minimum distance between x and M (as opposed

to between x and 0). The second is the most « can yield under a functional of
norm 1 that annihilates any element of M. Intuitively, the “remaining bit” that’s
“not annihilated” is & — m; this is maximized when it is aligned with = — at my,.
So it makes sense that the two should be equal.

0 Theorem: Consider a normed linear space X and a subspace M therein. Let

x € X . Then

d =inf H:L' m“ maxH H <£E T > = matz*H » <q; - movw*> .

z eMt z eMt

Or, in our terminology above, H:I:HM :‘ e The maximum on the right is
achieved for some ZII; € M*; if the infemum on the left is achieved for some

m € M , then & —m is aligned with :1:; .
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Intuitively, this is because at the optimal m, the residual  — m, is aligned to

. 1 *
some vector in M~ . As such, for that vector, <:13 -m,,T > = ”a: — mOH. For every

other z , it’ll be smaller than that.

Pictorially, looking for the point on M that minimizes the norm is equivalent to

looking for a point on M™ that is aligned with = — m.

H—J
r—m
0
S cO AS)
.
This also implies that a vector m0 -norm projection if and only if

there is a non—zero ve tm a 1gne% wit, 5771,0

0 Theor; N ea subspa rmed space X. Let ' € X . Then
P ( e\, -] = s, (27)
where the minimum on the left is achieved for some m; € M. If the supremum

is achieved for some x € M , then x — m; is aligned with x,.

Because the minimum on the left is always achieved, it is always more desirable
to express optimization problems in a dual space.

0 In many optimization problems, we seek to minimize a norm over an affine
subset of a dual space rather than subspace. More specifically, subject to a set of

linear constraints of the form <yi,w*> = c,. In that case, if Z is some vector that

satisfies these constraints,
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ff dsdt—%Q
:[tfu f tult dt——
Tf ds—f tu(t dt——
T2

fo (T = tyuls) ds = a(T) +

TZ
<T—t,v> = x(T)—i-?

Where v is the function in NBV[0,1] associated with u, as described
above.
e Qur problem is then a minimum norm problem subject to a single linear
constraint. We want 2(7) = 1, and using our theorem, as we did above
a(lc—I—é u\(

This is a one-dimensional pro ? Is in C'[O 1] the space to

which NBV is dﬁ‘q 1% o [ = 1)a] = Ta, and the
W&‘& at a \@&e ave mm )t v” =++5T.

P(e\, \%ﬂ"feren@a‘ a\nth respect to T, we find that the minimum fuel

mm(ﬂt,y):ugT?

H maXH(T t)a<1

expenditure of V2 is achieved at T = \/_

e To find the optimal u, note that the optimal v must be aligned to
(T —t)a. As we discussed above when characterizing alignment of C and
NBYV, this means that v must be a step function at ¢ = 0, rising to \/5 at
t = 0, and as such, u must be an impulse (delta function) at ¢ = 0.

e Hyperplanes € the Geometric Hahn-Banach Theorem

0 Definition: A hyperplane H of a normed linear space X is a maximal proper
affine set. ie: if H C A and A is affine, then either A = Hor A = X.

0 Theorem: A set H is a hyperplane if and only if it is of the form
{m €eX:f(x)= c} where fis a non-zero linear functional, and c¢ is a scalar.
Proof

e If Let H=x + M, where M is a linear subspace
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