
7.2 Proof of correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 The running time of the ellipsoid method . . . . . . . . . . . . . . . . . 33

8 Optimization in Networks 34
8.1 Graph terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 Minimum cost flow problem . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3 Spanning tree solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.4 The network simplex method . . . . . . . . . . . . . . . . . . . . . . . . 36
8.5 Integrality of optimal solutions . . . . . . . . . . . . . . . . . . . . . . . 38
8.6 Longest path problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9 Transportation and Assignment Problems 40
9.1 Transportation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2 Network simplex method in tableau form . . . . . . . . . . . . . . . . . 41
9.3 Assignment problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

10 Maximum Flows and Perfect Matchings 44
10.1 Maximum flow problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10.2 Max-flow min-cut theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10.3 The Ford-Fulkerson algorithm . . . . . . . . . . . . . . . . . . . . . . . . 45
10.4 Applications of the max-flow min-cut theorem . . . . . . . . . . . . . . . 46
10.5 A polynomial-time algorithm for the assignment problem . . . . . . . . 48

11 Shortest Paths and Minimum Spanning Trees 50
11.1 Bellman’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
11.2 Bellman-Ford algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.3 Dijkstra’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.4 Minimal spanning tree problem . . . . . . . . . . . . . . . . . . . . . . . 53

12 Semidefinite Programming 54
12.1 Primal-dual interior-point methods . . . . . . . . . . . . . . . . . . . . . 54
12.2 Semidefinite programming problem . . . . . . . . . . . . . . . . . . . . . 54
12.3 Max-cut problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
12.4 Symmetric rendezvous search game . . . . . . . . . . . . . . . . . . . . . 57

13 Branch and Bound 59
13.1 Knapsack problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
13.2 Branch and bound technique . . . . . . . . . . . . . . . . . . . . . . . . 60
13.3 Dakin’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

14 Heuristic Algorithms 63
14.1 The travelling salesman problem . . . . . . . . . . . . . . . . . . . . . . 63
14.2 Heuristic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
14.3 Heuristics for the TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
14.4 Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ii

Preview from Notesale.co.uk

Page 2 of 122



2.2 Linear programs

A linear program is an optimization problem in which the objective and all constraints
are linear. It has the form

minimize cTx

subject to aTi x ≥ bi, i ∈M1

aTi x ≤ bi, i ∈M2

aTi x = bi, i ∈M3

xj ≥ 0, j ∈ N1

xj ≤ 0, j ∈ N2

where c ∈ Rn is a cost vector, x ∈ Rn is a vector of decision variables, and constraints
are given by ai ∈ Rn and bi ∈ R for i ∈ {1, . . . ,m}. Index sets M1,M2,M3 ⊆ {1, . . . ,m}
and N1, N2 ⊆ {1, . . . , n} are used to distinguish between different types of constraints.

An equality constraint aTi x = bi is equivalent to the pair of constraints aTi ≤ bi and
aTi x ≥ bi, and a constraint of the form aTi x ≤ bi can be rewritten as (−ai)Tx ≥ −bi.
Each occurrence of an unconstrained variable xj can be replaced by x+j + x−j , where

x+j and x−j are two new variables with x+j ≥ 0 and x−j ≤ 0. We can thus write every
linear program in the general form

min {cTx : Ax ≥ b, x ≥ 0} (2.1)

where x, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. Observe that constraints of the form xj ≥ 0
and xj ≤ 0 are just special cases of constraints of the form aTi x ≥ bi, but we often
choose to make them explicit.

A linear program of the form

min {cTx : Ax = b, x ≥ 0} (2.2)

is said to be in standard form. The standard form is of course a special case of the
general form. On the other hand, we can also bring every general form problem into
the standard form by replacing each inequality constraint of the form aTi x ≤ bi or
aTi x ≥ bi by a constraint aTi x + si = bi or aTi x − si = bi, where si is a new so-called
slack variable, and an additional constraint si ≥ 0.

The general form is typically used to discuss the theory of linear programming, while the
standard form is more convenient when designing algorithms for linear programming.

Example 2.3. Consider the following linear program, as illustrated in Figure 2:

minimize −(x1 + x2)
subject to x1 + 2x2 ≤ 6

x1 − x2 ≤ 3
x1, x2 ≥ 0

7
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2.4 Complementary slackness

An important relationship between primal and dual solutions is provided by conditions
known as complementary slackness. Complementary slackness requires that slack
does not occur simultaneously in a variable, of the primal or dual, and the corresponding
constraint, of the dual or primal. Here, a variable is said to have slack if its value is
non-zero, and an inequality constraint is said to have slack if it does not hold with
equality. It is not hard to see that complementary slackness is a necessary condition
for optimality. Indeed, if complementary slackness was violated by some variable and
the corresponding constraint, reducing the value of the variable would reduce the value
of the Lagrangian, contradicting optimality of the current solution. Recall that the
variables of the dual correspond to the Lagrange multipliers. The following result
formalizes this intuition.

Theorem 2.4. Let x and λ be feasible solutions for the primal (2.1) and the dual (2.3),
respectively. Then x and λ are optimal if and only if they satisfy complementary slack-
ness, i.e. if

(cT − λTA)x = 0 and λT (Ax− b) = 0. (2.4)

Proof. Since x and λ are feasible, (2.4) holds if and only if (cT−λTA)x+λT (Ax−b) = 0.
But this is equivalent to cTx = λT b, which holds if and only if x and λ are optimal.

2.5 Shadow prices

A more intuitive understanding of Lagrange multipliers can be obtained by again
viewing (1.1) as a family of problems parameterized by b ∈ Rm. As before, let
φ(b) = inf{f(x) : h(x) ≤ b, x ∈ Rn}. It turns out that at the optimum, the Lagrange
multipliers equal the partial derivatives of φ.

Theorem 2.5. Suppose that f and h are continuously differentiable on Rn, and that
there exist unique functions x∗ : Rm → Rn and λ∗ : Rm → Rm such that for each
b ∈ Rm, h(x∗(b)) = b and f(x∗(b)) = φ(b) = inf{f(x)− λ∗(b)T (h(x)− b) : x ∈ Rn}. If
x∗ and λ∗ are continuously differentiable, then

∂φ

∂bi
(b) = λ∗i (b).

Proof. We have that

φ(b) = f(x∗(b))− λ∗(b)T (h(x∗(b))− b)
= f(x∗(b))− λ∗(b)Th(x∗(b)) + λ∗(b)T b.

9

Preview from Notesale.co.uk

Page 14 of 122



3.3 The simplex tableau

We can understand the simplex method in terms of the so-called simplex tableau,
which stores all the information required to explore the set of basic solutions.

Let A ∈ Rm×n, b ∈ Rm, and x ∈ Rn such that Ax = b. Let B be a basis, i.e. a set
B ⊆ {1, . . . , n} with |B| = m, corresponding to a choice of m non-zero variables. Then

ABxB +ANxN = b,

where AB ∈ Rm×m and AN ∈ Rm×(n−m) respectively consist of the columns of A
indexed by B and those not indexed by B, and xB and xN respectively consist of the
rows of x indexed by B and those not indexed by B. Moreover, if x is a basic solution,
then there is a basis B such that xN = 0 and ABxB = b, and if x is a basic feasible
solution, there is a basis B such that xN = 0, ABxB = b, and xB ≥ 0.

For x with Ax = b and basis B, we have that xB = A−1B (b−ANxN ), and thus

f(x) = cTx = cTBxB + cTNxN

= cTBA
−1
B (b−ANxN ) + cTNxN

= cTBA
−1
B b+ (cTN − cTBA−1B AN )xN .

Suppose that we want to maximize cTx and find that

cTN − cTBA−1B AN ≤ 0 and A−1B b ≥ 0. (3.3)

Then, for any feasible x ∈ Rn, it holds that xN ≥ 0 and therefore f(x) ≤ cTBA
−1
B b.

The basic solution x∗ with x∗B = A−1B b and x∗N = 0, on the other hand, is feasible and
satisfies f(x∗) = cTBA

−1
B b. It must therefore be optimal.

If alternatively (cTN − cTBA
−1
B AN )i > 0 for some i, then we can increase the value of the

objective by increasing (xN )i. Either this can be done indefinitely, which means that
the maximum is unbounded, or the constraints force some of the variables in the basis
to become smaller and we have to stop when the first such variable reaches zero. In
that case we have found a new BFS and can repeat the process.

Assuming that the LP is feasible and has a bounded optimal solution, there exists
a basis B∗ for which (3.3) is satisfied. The basic idea behind the simplex method
is to start from an initial BFS and then move from basis to basis until B∗ is found.
The information required for this procedure can conveniently be represented by the
so-called simplex tableau. For a given basis B, it takes the following form:1

1The columns of the tableau have been permuted such that those corresponding to the basis appear
on the left. This has been done just for convenience: in practice we will always be able to identify the
columns corresponding to the basis by the embedded identity matrix.
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following tableau:

−1 −2 −1 1 0 −3

−2 1 3 0 1 −4

2 3 4 0 0 0

In the dual simplex algorithm the pivot is selected by picking a row i such that ai0 < 0
and a column j ∈ {j′ : aij′ < 0} that minimizes −a0j/aij . Pivoting then works just
like in the primal algorithm. In the example we can pivot on a21 to obtain

0 − 5
2 − 5

2 1 − 1
2 −1

1 − 1
2 − 3

2 0 − 1
2 2

0 4 7 0 1 −4

and then on a12 to obtain

0 1 1 − 2
5

1
5

2
5

1 0 −1 − 1
5 − 2

5
11
5

0 0 3 8
5

1
5 − 28

5

We have reached the optimum of 28/5 with x1 = 11/5, x2 = 2/5, and x3 = 0.

It is worth pointing out that for problems in which all constraints are inequality con-
straints, the optimal dual solution can also be read off from the final tableau. For
problems of this type, the last m columns of the extended constraint matrix A corre-
spond to the slack variables and therefore contain values 1 or −1 on the diagonal and 0
everywhere else. For the same reason, the last m columns of the vector cT are 0. The
values of the dual variables, each of them with opposite sign of the slack variable in the
corresponding constraint, thus appear in the last m columns of the vector (cT − λTA)
in the last row of the final tableau. In our example, we have λ1 = 8/5 and λ2 = 1/5.

4.3 Gomory’s cutting plane method

Another situation where the dual simplex method can be useful is when we need to
add constraints to an already solved LP. While such constraints can make the primal
solution infeasible, they do not affect feasibility of the dual solution. We can therefore
simply add the constraint and continue running the dual LP algorithm from the current
solution until the primal solution again becomes feasible. The need to add constraints
to an LP for example arises naturally in Gomory’s cutting plane approach for solving
integer programs (IPs). An IP is a linear program with the additional requirement that
variables should be integral.

Assume that for a given IP we have already found an optimal (fractional) solution x∗

with basis B, and let aij denote the entries of the final tableau, i.e. aij = (A−1B Aj)i

20
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7 Ellipsoid Method

7.1 Ellipsoid method

Consider a polytope P = {x ∈ Rn : Ax ≥ b}, given by a matrix A ∈ Zm×n and a vector
b ∈ Zm. Assume for now that P is bounded and either empty or full-dimensional. Here,
P is called full-dimensional if Vol(P ) > 0. The ellipsoid method takes the following
steps to decide whether P is non-empty:

1. Let U be the largest absolute value among the entries of A and b, and define

x0 = 0, D0 = n(nU)2nI, E0 = E(x0, D0),

V = (2
√
n)n(nU)n

2

, v = n−n(nU)−n
2(n+1),

t∗ = d2(n+ 1) log(V/v)e.
2. For t = 0, . . . , t∗, do the following:

1. If t = t∗ then stop; P is empty.

2. If xt ∈ P then stop; P is non-empty.

3. Find a violated constraint, i.e. a row j such that aTj xt < bj .

4. Let Et+1 = E(xt+1, Dt+1) with

xt+1 = xt +
1

n+ 1

Dtaj√
aTj Dtaj

,

Dt+1 =
n2

n2 − 1

(
Dt −

2

n+ 1

Dtaja
T
j Dt

aTj Dtaj

)
.

The ellipsoid method is a so-called interior point method, because it traverses the
interior of the feasible set rather than following its boundary.

7.2 Proof of correctness

Observe that E0 is a ball centered at the origin. Given Theorem 6.2, and assuming
that (i) P ⊆ E0 and Vol(E0) < V and that (ii) P is either empty or Vol(P ) > v, correct-
ness of the ellipsoid method is easy to see: it either finds a point in P , thereby proving
that P is non-empty, or an ellipsoid Et∗ ⊇ P with Vol(Et∗) < e−t

∗/2(n+1)Vol(E0) <
(v/V )Vol(E0) < v, in which case P must be empty.

We now show that the above assumptions hold, starting with the inclusion of P in E0

and the volume of E0. We use the following lemma.

Lemma 7.1. Suppose A ∈ Zm×n, b ∈ Rm and m ≥ n. Let U be the largest absolute
value among the entries of A and b. Then every extreme point x of the polytope P =
{x′ ∈ Rn : Ax′ ≥ b} satisfies −(nU)n ≤ xi ≤ (nU)n for all i = 1, . . . , n.

30
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i, jmij

i
∑
k:(i,k)∈Emik − bi

j
∑
k:(j,k)∈Emjk − bj

0

cij

Figure 9: Representation of flow conservation constraints by a transportation problem

a feasible flow in the minimum cost flow problem. Let the flows on edges (ij, i) and
(ij, j) be mij − xij and xij , respectively. The total flow into vertex i then is∑
k:(i,k)∈E(mik − xik) +

∑
k:(k,i)∈E xki , which must be equal to

∑
k:(i,k)∈Emik − bi.

This is the case if and only if bi +
∑
k:(k,i)∈E xki−

∑
k:(i,k)∈E xik = 0, which is the flow

conservation constraint for vertex i in the original problem.

9.2 Network simplex method in tableau form

When solving a transportation problem using the network simplex method, it is con-
venient to write it down in a tableau of the following form, where λi for i = 1, . . . , n
and µj for j = 1, . . . ,m are the dual variables corresponding to the flow conservation
constraints for suppliers and consumers, respectively:

µ1 · · · µm

λ1 x11 · · · x1m s1c11 · · · c1m
...

...
. . .

...
......

. . .
...

λn xn1 · · · xnm sncn1 · · · cnm

d1 · · · dm

Consider the Hitchcock transportation problem given by the following tableau:

8
5 3 4 6

10
2 7 4 1

9
5 6 2 4

6 5 8 8

41

Preview from Notesale.co.uk

Page 46 of 122



increase and decrease the flow for edges along the cycle. In particular, increasing x21
by θ increases x12 and decreases x11 and x22 by the same amount. The is shown on the
right of Figure 10. Increasing x21 by the maximum amount of θ = 3 and re-computing
the values of the dual variables λ1 and µj , we obtain left hand tableau below.

Now, c24 < λ2 − µ4, and we can increase x24 by 7 to obtain the right hand tableau
below, which satisfies cij ≥ λi − µj for all (i, j) /∈ T and therefore is optimal.

−5 −3 −7 −9

0 3 5 7 9
5 3 4 6

−3 3 0 7 6
2 7 4 1

−5 0 −2 1 8
5 6 2 4

−5 −3 −2 −4

0 3 5 2 4
5 3 4 6

−3 3 0 −1 7
2 7 4 1

0 5 3 8 1
5 6 2 4

9.3 Assignment problem

An instance of the assignment problem is given by n agents and n jobs, and costs cij
for assigning job j to agent i. The goal is to assign exactly one job to each agent to

minimize

n∑
i=1

n∑
j=1

cijxij

subject to xij ∈ {0, 1} for all i, j = 1, . . . , n
n∑
j=1

xij = 1 for all i = 1, . . . , n

n∑
i=1

xij = 1 for all j = 1, . . . , n

(9.1)

Except for the integrality constraints, this is a special case of the Hitchcock trans-
portation problem. All basic solutions of the LP relaxation of this problem, which
is obtained by replacing the integrality constraint xij ∈ {0, 1} by 0 ≤ xij ≤ 1, are
spanning tree solutions and therefore integral. Thus, both the network simplex method
and the general simplex method yield an optimal solution of the original problem when
applied to the LP relaxation. This is not necessarily the case, for example, for the
ellipsoid method.

This problem is also known as the weighted bipartite matching problem. In the
next lecture we will look at a polynomial time algorithm for solving this problem. As
a preliminary, we state the following lemma.

Lemma 9.2. A feasible solution {xij} to (9.1) is optimal if there exist {λi}, {µj} such
that λi − µj ≤ cij for all i, j, and λi − µj = cij if xij = 1.
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10 Maximum Flows and Perfect Matchings

10.1 Maximum flow problem

Consider a flow network (V,E) with a single source 1, a single sink n, and finite capac-
ities mij = Cij for all (i, j) ∈ E. We will also assume for convenience that mij = 0 for
all (i, j) ∈ E. The maximum flow problem then asks for the maximum amount of
flow that can be sent from vertex 1 to vertex n, i.e. the goal is to

maximize δ

subject to
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =


δ if i = 1

−δ if i = n

0 otherwise

0 ≤ xij ≤ Cij for all (i, j) ∈ E.

(10.1)

To see that this is again a special case of the minimum cost flow problem, set cij = 0 for
all (i, j) ∈ E, and add an additional edge (n, 1) with infinite capacity and cost cn1 = −1.
Since the new edge (n, 1) has infinite capacity, any feasible flow of the original network
is also feasible for the new network. Cost is clearly minimized by maximizing the flow
across the edge (n, 1), which by the flow conservation constraints for vertices 1 and n
maximizes flow through the original network. This is called a circulation problem,
because there are no sources or sinks but flow merely circulates in the network.

10.2 Max-flow min-cut theorem

Consider a flow network G = (V,E) with capacities Cij for all (i, j) ∈ E. A cut of
G is a partition of V into two sets, and the capacity of a cut is defined as the sum of
capacities of all edges across the partition. Formally, for S ⊆ V , the capacity of the
cut (S, V \ S) is

C(S) =
∑

(i,j)∈E∩(S×(V \S))

Cij . (10.2)

Assume that x is a feasible flow vector that sends δ units of flow from vertex 1 to
vertex n. It is easy to see that δ is bounded from above by the capacity of any cut S
with 1 ∈ S and n ∈ V \ S. Indeed, for X,Y ⊆ V , let

f(X,Y ) =
∑

(i,j)∈E∩(X×Y )

xij .

Then, for any S ⊆ V with 1 ∈ S and n ∈ V \ S,

δ =
∑
i∈S

( ∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji

)
(10.3)
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11 Shortest Paths and Minimum Spanning Trees

11.1 Bellman’s equations

In the single-destination shortest path problem one is given a destination t ∈ V
and simultaneously looks for shortest paths from any vertex i ∈ V \ {t} to t. It is
equivalent to the minimum cost flow problem on the same network where one unit of
flow is to be routed from each vertex i ∈ V \ {t} to t, i.e. the one with supply bi = 1
at every vertex i ∈ V \ {t} and demand bt = −(|V | − 1) at vertex t.

Let λi for i ∈ V be the dual solution corresponding to an optimal spanning tree solution
of this flow problem, and recall that for every edge (i, j) ∈ E with xij > 0,

λi = cij + λj .

By setting λt = 0 and adding these equalities along a path from i to t, we see that
λi is equal to the length of a shortest path from i to t. Moreover, since bi = 1 for all
i ∈ V \ {t}, and given λt = 0, the dual problem is to

maximize
∑

i∈V \{t}

λi subject to λi ≤ cij + λj for all (i, j) ∈ E.

In an optimal solution, λi will thus be as large as possible subject to the constraints,
i.e. it will satisfy the so-called Bellman equations

λi = min
j:(i,j)∈E

{cij + λj} for all i ∈ V \ {t},

with λt = 0. The intuition behind these equalities is that in order to find a shortest
path from i to t, one should choose the first edge (i, j) on the path in order to minimize
the sum of the length of this edge and that of a shortest path from j to t. This situation
is illustrated in Figure 14.

i tj
cij λk

Figure 14: Illustration of the Bellman equations for the shortest path problem
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11.4 Minimal spanning tree problem

The minimum spanning tree problem for a network (V,E) with associated costs
cij for each edge (i, j) ∈ E asks for a spanning tree of minimum cost, where the cost
of a tree is the sum of costs of all its edges. This problem arises, for example, if one
wishes to design a communication network that connects a given set of locations. The
following property of minimum spanning trees will be useful.

Theorem 11.2. Let (V,E) be a graph with edge costs cij for all (i, j) ∈ E. Let U ⊆ V
and (u, v) ∈ U × (V \ U) such that cuv = min(i,j)∈U×(V \U) cij. Then there exists a
spanning tree of minimum cost that contains (u, v).

Proof. Let T ⊆ E be a spanning tree of minimum cost. If (u, v) ∈ T we are done.
Otherwise, T ∪ {(u, v)} contains a cycle, and there must be another edge (u′, v′) ∈ T
such that (u′, v′) ∈ U × (V \U). Then, (T ∪{(u, v)}) \ {(u′, v′)} is a spanning tree, and
its cost is no greater than that of T .

Prim’s algorithm uses this property to inductively construct a minimum spanning
tree. It proceeds as follows:

1. Set U = {1} and T = ∅.
2. If U = V , return T . Otherwise find an edge (u, v) ∈ U × (V \ U) such that
cuv = min(i,j)∈U×(V \U) cij .

3. Add v to U and (u, v) to T , and return to Step 2.

It is called a greedy algorithm, because it always chooses an edge of minimum cost.

Example. In this example, Prim’s algorithm adds edges in the sequence {1, 3}, {3, 6},
{6, 4}, {3, 2}, {2, 5}.

1

2

3

4

5 6

1

23 4

5

5

6

6

6

8

After each iteration, we may compute and store for every j ∈ V \ U a minimum cost
edge to U . This only needs comparison between the previously stored edge and the
edge to the vertex newly added to U . We then add to U the vertex that is closest to
U . So each iteration needs time O(|V |). The algorithm performs |V | − 1 iterations, so
has overall running time of O(|V |2).
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after the 3rd attempt is

x>C2x = x>



1 1
2

1
2

1
2

1
2 0 1

2 0 1
2

1
2 1 1

2 0 1
2

1
2

1
2

1
2 0

1
2

1
2 1 1

2 0 1
2 0 1

2
1
2

1
2 0 1

2 1 1
2

1
2

1
2

1
2 0

1
2

1
2 0 1

2 1 1
2 0 1

2
1
2

0 1
2

1
2

1
2

1
2 1 1

2 0 1
2

1
2

1
2 0 1

2 0 1
2 1 1

2
1
2

0 1
2

1
2

1
2

1
2 0 1

2 1 1
2

1
2 0 1

2 0 1
2

1
2

1
2

1
2 1


x.

C2 is not positive definite. (It’s eigenvalues are 4, 1, 1, 1, 1, 1, 1,− 1
2 ,−

1
2 .) This means

that the quadratic form x>C2x has local minima. One such is given by x> =
(1/9)(1, 1, 1, 1, 1, 1, 1, 1, 1), which gives x>C2x = 4/9. But better is
x> = (1/3)(1, 0, 0, 0, 0, 1, 0, 1, 0), which gives x>C2x = 1/3. How might we prove this
is best?

Let J2 be the 9×9 matrix of 1s. Note that for x to be a vector of probabilities, we must
have x>Jx = 9. As with the max-cut problem we think of relaxing xx> to a matrix
X � 0 and consider the SDP

minimize tr(C2X) s.t. X ∈ Sn, X ≥ 0, X � 0 and tr(J2X) = 9.

One can numerically compute that the optimal value of this SDP. It is 1/3. This
provides a lower bound on the probability that the players do not rendezvous by the
end of the 3rd attempt. This is achieved by x> = (1/3)(1, 0, 0, 0, 0, 1, 0, 1, 0) — so this
strategy does indeed minimize the probability that they have not yet met by the end
of the 3rd attempt.

These ideas can be extended (Weber, 2008) to show that the expected time to ren-
dezvous is minimized when players adopt a strategy in which they choose their first
telephone at random, and if this does not connect them then on successive pairs of
subsequent attempts they choose aa, bc or cb, each with probability 1/3. Given that
they fail to meet at the first attempt, the expected number of further attempts required
is 5/2. This is less than 3, i.e. the expected number of steps required if players simply
try telphones at random at each attempt. There are many simply-stated but unsolved
problems in the field of search games.
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where w ∈ R and y ∈ Rn. The Lagrangian has a finite maximum for v ∈ R and x ∈ Rm
with x ≥ 0 if and only if

∑n
j=1 yj = 1,

∑n
j=1 pijyj ≤ w for i = 1, . . . ,m, and y ≥ 0.

The dual of (15.1) is therefore

minimize w

subject to

n∑
j=1

pijyj ≤ w for i = 1, . . . ,m,

n∑
j=1

yj = 1, y ≥ 0.

It is easy to see that the optimal solution of the dual is miny∈Y maxx∈X p(x, y), and
the theorem follows from strong duality.

The number maxx∈X miny∈Y p(x, y) = miny∈Y maxx∈X p(x, y) is called the value of
the matrix game with payoff matrix P .

The solution of a matrix game can be found by solving the linear program (15.1). This
problem can be simplified by first adding a constant to every element of P so that
P > 0. This does not change the equilibrium of the game, but ensures that at the
solution we must have v > 0. By setting x′ = x/v, and noting that 1/v =

∑
i x
′
i, we

can rewrite (15.1) as

minimize

m∑
i=1

x′i subject to

m∑
i=1

x′ipij ≥ 1 for j = 1, . . . , n, x′ ≥ 0.

Alternatively, we might apply a similar transformation to the dual and solve

maximize

n∑
i=1

y′i subject to

n∑
i=1

pijy
′
i ≤ 1 for j = 1, . . . , n, ȳ′ ≥ 0.

15.3 Equilibria of matrix games

The minimax theorem implies that every matrix game has an equilibrium, and in fact
characterizes the set of equilibria of these games.

Theorem 15.2. A pair of strategies (x, y) ∈ X × Y is an equilibrium of the matrix
game with payoff matrix P if and only if it is a minimax point, i.e.

min
y′∈Y

p(x, y′) = max
x′∈X

min
y′∈Y

p(x′, y′) and

max
x′∈X

p(x′, y) = min
y′∈Y

max
x′∈X

p(x′, y′).
(15.2)

Proof. For all (x, y) ∈ X × Y ,

min
y′∈Y

max
x′∈X

p(x′, y′) ≤ max
x′∈X

p(x′, y) ≥ p(x, y) ≥ min
y′∈Y

p(x, y′) ≤ max
x′∈X

min
y′∈Y

p(x′, y′),

and the first and last term are equal by Theorem 15.1.
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If (x, y) is an equilibrium, the second and third inequality hold with equality. This
means that the first and last inequality have to hold with equality as well, and (15.2)
follows.

On the other hand, if (15.2) is satisfied, then the first and last inequality hold with
equality. This means that the second and third inequality have to hold with equality
as well, so (x, y) is an equilibrium.

Some other properties specific to matrix games are stated in the following theorem.
These are that all equilibria yield the same payoffs and that any pair of strategies
of the two players, such that each of them is played in some equilibrium, is itself an
equilibrium.

Theorem 15.3. Let (x, y), (x′, y′) ∈ X×Y be equilibria of the matrix game with payoff
matrix P . Then p(x, y) = p(x′, y′), and (x, y′) and (x′, y) are equilibria as well.

Proof. Since equilibrium strategies are best responses to each other, we have that

p(x, y) ≤ p(x, y′) ≤ p(x′, y′) ≤ p(x′, y) ≤ p(x, y).

Since the first and last term are the same, the inequalities have to hold with equality
and the first claim follows. Then,

p(x, y′) = p(x′, y′) ≥ p(z, y′) for all z ∈ X,

p(x, y′) = p(x, y) ≤ p(x, z) for all z ∈ Y ,

p(x′, y) = p(x, y) ≥ p(z, y) for all z ∈ X, and

p(x′, y) = p(x′, y′) ≥ p(x′, z) for all z ∈ X,

where the inequalities hold because (x, y) and (x′, y′) are equilibria. Thus (x, y′) and
(x′, y) are pairs of strategies that are best responses to each other, and the second claim
follows as well.

Theorems 15.1, 15.2, and 15.3 together also imply that the set of equilibria of a matrix
game is convex.
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16 Solution of Two-person Games

16.1 Nash’s theorem

Many of the results concerning equilibria of matrix games do not carry over to bimatrix
games, with the exception of existence.

Theorem 16.1 (Nash, 1951). Every bimatrix game has an equilibrium.

We use the following result.

Theorem 16.2 (Brouwer fixed point theorem). Let f : S → S be a continuous func-
tion, where S ⊆ Rn is closed, bounded, and convex. Then f has a fixed point.

Proof of Theorem 16.1. Define X and Y as before, and observe that X × Y is closed,
bounded, and convex. For x ∈ X and y ∈ Y define si(x, y) and tj(x, y) as the additional
payoff the two players could obtain by playing their ith or jth pure strategy instead of
x or y, i.e.

si(x, y) = max {0, p(emi , y)− p(x, y)} for i = 1, . . . ,m and

tj(x, y) = max {0, q(x, enj )− q(x, y)} for j = 1, . . . , n,

where ek` denotes the `th unit vector in Rk. Further define f : (X × Y )→ (X × Y ) by
letting f(x, y) = (x′, y′) with

x′i =
xi + si(x, y)

1 +
∑m
k=1 sk(x, y)

and y′j =
yj + tj(x, y)

1 +
∑n
k=1 tk(x, y)

for i = 1, . . . ,m and j = 1, . . . , n. Function f is continuous, so by Theorem 16.2 is must
have a fixed point, i.e. a pair of strategies (x, y) ∈ X × Y such that f(x, y) = (x, y).

Further observe that there has to exist i ∈ {1, . . . ,m} such that xi > 0 and si(x, y) = 0,
since otherwise

p(x, y) =

m∑
k=1

xkp(e
m
k , y) >

m∑
k=1

xkp(x, y) = p(x, y).

Therefore, and since (x, y) is a fixed point,

xi =
xi + si(x, y)

1 +
∑m
k=1 sk(x, y)

and thus
m∑
k=1

sk(x, y) = 0.
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This means that for k = 1, . . . ,m, sk(x, y) = 0, and therefore

p(x, y) ≥ p(emk , y).

It follows that

p(x, y) ≥ p(x′, y) for all x′ ∈ X.

An analogous argument shows that q(x, y) ≥ q(x, y′) for all y′ ∈ Y , so (x, y) must be
an equilibrium.

Our requirement that a bimatrix game has a finite number of actions is crucial for this
result. This can be seen very easily by considering a game where the set of actions of
each player is the set of natural numbers, and players get a payoff of 1 if they choose a
number that is greater than the one chosen by the other player, and zero otherwise.

16.2 The complexity of finding an equilibrium

The proof of Theorem 16.1 relies on fixed points of a continuous function and does not
give rise to a finite method for finding an equilibrium. Quite surprisingly, equilibrium
computation turns out to be more or less a combinatorial problem.

Define the support of strategy x ∈ X as S(x) = {i ∈ {1, . . . ,m} : xi > 0}, and that
of strategy y ∈ Y as S(y) = {j ∈ {1, . . . ,m} : yj > 0}. It is easy to see that a mixed
strategy is a best response if and only if all pure strategies in its support are best
responses: if one of them was not a best response, then the payoff could be increased
by reducing the probability of that strategy, and increasing the probabilities of the
other strategies in the support appropriately. In other words, randomization over the
support of an equilibrium does not happen for the player’s own sake, but to allow the
other player to respond in a way that sustains the equilibrium.

It also follows from these considerations that finding an equilibrium boils down to find-
ing its supports. Once the supports are known, the precise strategies can be computed
by solving a set of equations, which in the two-player case are linear. For supports
of sizes k and `, there is one equation for each player stating that the probabilities
sum up to one, and k − 1 or ` − 1 equations, respectively, stating that the expected
payoff is the same for every pure strategy in the support. Solving these k + ` equa-
tions in k + ` variables yields k values for player 1 and ` values for player 2. If the
solution corresponds to a strategy profile and expected payoffs are maximized by the
pure strategies in the support, then an equilibrium has been found. An equilibrium
with supports of size two in the game of chicken would have to satisfy x1 + x2 = 1,
y1 + y2 = 1, 2x1 + 1x2 = 3x1 + 0x2, and 2y1 + 1y2 = 3y1 + 0y2. The unique solution,
x1 = x2 = y1 = y2 = 1/2, also satisfies the additional requirements and therefore is
an equilibrium. No equilibrium with full supports exists in the prisoner’s dilemma,
because the corresponding system of equalities does not have a solution.
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(or zi) associated with an twice-represented strategy i, which is complementary to the
variable zi or (or xi) that was decreased to 0 at the previous step.

v0

v1

v2

v3
v4

x1

x2 x3

x1 x2 x3 z1 z2 z3
v0 : 0 0 0 1 1 1
v1 : 0 1

3 0 0 1 1
3

v2 : 1
6

1
3 0 0 1 0

v3 : 0 1
3

1
6 0 1

2 0
v4 : 0 1

6
1
3

1
2 0 0

In this example there is only one equilibrium. If we had started with i = 1 we would
have reached v4 along a different path.

The algorithm will find one equilibrium, but if there is more than one it cannot guar-
antee to find them all. Starting with different i to be dropped we might reach the same
equilibrium or a different equilibrium. If we start at an one equilibrium we will follow
a path to a different equilibrium or to v0.

There is an interesting corollary of this analysis.

Corollary 16.6. A nondegenerate bimatrix game has an odd number of Nash equilibria.

Proof. Let V be the set of vertices in which only Player I’s first strategy might be
missing (i.e. such that x1z1 > 0). Every equilibrium of P × Q is a member of V
(since equilibriums are vertices for which all strategies are represented). In the graph
formed by vertices in V , each vertex has degree 1 or 2. So this graph consists of disjoint
paths and cycles. The endpoints of the paths are the Nash equilibriums and the special
vertex (x, y) = (0, 0). There are an even number of endpoints, so the number of Nash
equilibria must be odd.
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Consider for example the bimatrix game given by

P =

 3 3
2 5
0 6

 and Q =

 3 2
2 6
3 1

 ,

Indexing z and w by M = {1, . . . ,m} and N = {m + 1, . . . ,m + n}, respectively, the
constraint QTx+ w = 1 can be written in tableau form as follows:

x1 x2 x3 w4 w5

3 2 3 1 0 1
2 6 1 0 1 1

Assume that label 2 is dropped by increasing x2 from 0. By pivoting we obtain the
following tableau:

7
3 0 8

3 1 − 1
3

2
3

1
3 1 1

6 0 1
6

1
6

The second row now corresponds to variable x2 that has entered the basis. On the
other hand, variable w5 has left the basis. We thus want to turn to the constraint
Py+ z = 1 and drop the duplicate label 5. The initial tableau for this constraint looks
as follows:

y4 y5 z1 z2 z3
3 3 1 0 0 1
2 5 0 1 0 1
0 6 0 0 1 1

By pivoting on the second column, corresponding to y5, and on the third row, we pick
up label 3 and obtain the following tableau:

3 0 1 0 − 1
2

1
2

2 0 0 1 − 5
6

1
6

0 1 0 0 1
6

1
6

Pivoting one more time in each of the two polytopes, we drop label 3 to pick up label 4:

7
8 0 1 3

8 − 1
8

1
4

3
16 1 0 − 3

48
3
16

1
8

and then drop label 4 to pick up label 2:

0 0 1 − 3
2

3
4

1
4

1 0 0 1
2 − 5

12
1
12

0 1 0 0 1
6

1
6

At this point we have a fully labelled pair. The final tableaus are the final two above.
Reading off the values of x and y from the last column of each tableau and scaling them
appropriately yields the equilibrium x = (0, 1/3, 2/3), y = (1/3, 2/3).
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If φj(N) < φj(N − {i}), player j might threaten player i, “Give me more or I will
convince the others to exclude you and I will be better off.” Player i has a valid counter-
objection if he can point out that if he gets the others to exclude j then i will be better
off by at least as much.

If every such objection has a counter-objection, then

φi(N)− φi(N − {j}) = φj(N)− φj(N − {i}).

The only solution to this is the Shapley value.

19.3 Bargaining theory

Bargaining theory investigates how agents should cooperate when non-cooperation may
result in outcomes that are Pareto dominated. Formally, a (two-player) bargaining
problem is a pair (F, d) where F ⊆ R2 is a convex set of feasible outcomes and
d ∈ F is a disagreement point that results if players fail to agree on an outcome.
Here, convexity corresponds to the assumption that any lottery over feasible outcomes
is again feasible. A bargaining solution then is a function that assigns to every
bargaining problem (F, d) a unique element of F .

An example of a bargaining problem is the so-called ultimatum game given by F =
{(v1, v2) ∈ R2 : v1 +v2 ≤ 1} and d = (0, 0), in which two players receive a fixed amount
of payoff if they can agree on a way to divide this amount among themselves. This game
has many equilibria when viewed as a normal-form game, since disagreement results in
a payoff of zero to both players. Players’ preferences regarding these equilibria differ,
and bargaining theory tries to answer the question which equilibrium should be chosen.
More generally, a two-player normal-form game with payoff matrices P,Q ∈ Rm×n can
be interpreted as a bargaining problem where F = conv({(pij , qij) : i = 1, . . . ,m, j =
1, . . . , n}), d1 = maxx∈X miny∈Y p(x, y), and d2 = maxy∈Y minx∈X q(x, y), given that
(d1, d2) ∈ F . Here, conv(S) denotes the convex hull of set S.

Two kinds of approaches to bargaining exist in the literature: a strategic one that
considers iterative procedures resulting in an outcome in F , and an axiomatic one that
tries to identify bargaining solutions that possess certain desirable properties. We will
focus on the axiomatic approach in this lecture.

19.4 Nash’s bargaining solution

For a given bargaining problem (F, d), Nash proposed to

maximize (v1 − d1)(v2 − d2)

subject to v ∈ F
v ≥ d.

(19.1)
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21.2 The revenue equivalence theorem

The symmetric independent private values model (SIPV) concerns the auction of
a single item, with risk neutral seller and bidders. Each bidder knows his own valuation
of the item, which he keeps secret, and valuations of the bidders can be modelled as
i.i.d. random variables. Important questions are

• what type of auction generates the most revenue for the seller?

• if seller or bidders are risk averse, which auction would they prefer?

• which auctions make it harder for the bidders to collude?

Let us begin with an intuitive result.

Lemma 21.1. In any SIPV auction in which the bidders bid optimally and the item
is awarded to the highest bidder, the bids are ordered the same as the valuations.

Proof. Consider an auction satisfying the terms of the lemma. Let e(p) be the minimal
expected payment that a bidder can make if he wants to win the item with probability
p. Notice that e(p) must be a convex function of p, i.e. e(αp + (1 − α)p′) ≤ αe(p) +
(1−α)e(p′). This is because one strategy for winning with probability αp+ (1−α)p′ is
to bid so as to either win with probability p or p′, doing these with probabilities α and
1−α respectively. Since e(p) is convex it is differentiable at all but a countable number
of points. A bidder who has valuation θ and bids so as to win with probability p has
expected profit π(θ) = pθ − e(p). Assuming that p is chosen optimally, the relation
between p and θ is determined by

∂π

∂p
= θ − e′(p) = 0. (21.1)

Since e′(p) is nondecreasing in p, it follows that p(θ) must be nondecreasing in θ. As
the item goes to the highest bidder, the probability of winning increases with the the
bid, and so the optimal bid must be nondecreasing in the valuation θ.

We say that two auctions have the same bidder participation if any bidder who finds
it profitable to participate in one auction also finds it profitable to participate in the
other. The following result is remarkable, as different auctions can have completely
different rules and the bidders’ optimal bidding strategies will differ.

Theorem 21.2 (Revenue equivalence theorem). The expected revenue obtained by the
seller is the same for any two SIPV auctions that (a) award the item to the highest
bidder, and (b) have the same bidder participation.

Proof. Suppose there are n bidders. From (21.1) we have

d

dθ
e(p(θ)) = e′(p)p′(θ) = θp′(θ).
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