
Activation Energy in Exothermic Reactions

Ans.

We use the fast method:

v = k [BrO₃-]x [Br-]y [H+]z
[BrO₃-]x
$$\longrightarrow$$
 2x = 2, x = 1
[Br-]y \longrightarrow 2y = 4, y = 2
[H+]z \longrightarrow 2y.2z = 8
2².2z = 8
2z = 2
7 = 1

So, the reaction rate equation: $v = k [BrO_3^-] [Br^-]^2 [H^+]$

11.In the reaction A + B + C → D + E, about the following data:

- ✓ If the concentration Arisfixed, the concentration of B and C each is raised to the the reaction rate is twice as large as.
- concentration B is fixed, then the reaction rate is eight times greater.
 - ✓ If the concentration of A and B each is raised twice, while the concentration of C is fixed, the reaction rate is four times greater.

Determine the total reaction order from the reaction

Ans.

 $v = k[A]^x[B]^y[C]^z$

	[A]	[B]	[C]	V
1	а	2 (b	2 C	2 (V
2	(a)2	2b \1	2c	2v)4
3	2 2a	b /2	2 2c	2 8v
4	2a	2b	С	4v

We use the fast method:

$$2^{x}.(\frac{1}{2})^{y} = 4 \rightarrow 2^{x-y} = 2^{2} \rightarrow x - y = 2....(1)$$

$$2^{y}.2^{z} = 2 \rightarrow 2^{y+z} = 2 \rightarrow y + z = 3..(2)$$

$$2^{x}.(\frac{1}{2})^{z} = 2 \leftrightarrow 2^{y+z} = 2 \rightarrow x \rightarrow z = 2....(3)$$
We use the elimination method:

(2)
$$y + z = 1$$

$$(1) x - y = 2$$

$$(3) x - z = 1 + (4) x + y = 2 + 2x = 4$$

$$(4) x + y = 2 + 2 = 4$$

$$x = 2$$

y = 0 (using equation number 4)

z = 1 (using equation number 2)

The total reaction order: x + y + z = 2 + 0 + 1 = 3