
2

4 · 0 ≡ 0 (mod 5). Thus the number of possible se-
quences a1,a2, . . . is 0 or 2 (mod 5), as desired.
Second solution. Say that a sequence is admissible if
it satisfies the given conditions. As in the first solution,
any admissible sequence is 5-periodic.
Now consider the collection S of possible 5-tuples of
numbers mod p given by (a1,a2,a3,a4,a5) for admis-
sible sequences {an}. Each of these 5-tuples in S
comes from a unique admissible sequence, and there
is a 5-periodic action on S given by cyclic permutation:
(a,b,c,d,e)→ (b,c,d,e,a). This action divides S into
finitely many orbits, and each orbit either consists of 5
distinct tuples (if a,b,c,d,e are not all the same) or 1
tuple (a,a,a,a,a). It follows that the number of admis-
sible sequences is a multiple of 5 plus the number of
constant admissible sequences.
Constant admissible sequences correspond to nonzero
numbers a (mod p) such that a2 ≡ 1 + a (mod p).
Since the quadratic x2 − x− 1 has discriminant 5, for
p > 5 it has either 2 roots (if the discriminant is a
quadratic residue mod p) or 0 roots mod p.

A4 The expected value is 2e1/2 −3.
Extend S to an infinite sum by including zero sum-
mands for i > k. We may then compute the expected
value as the sum of the expected value of the i-th sum-
mand over all i. This summand occurs if and only
if X1, . . . ,Xi−1 ∈ [Xi,1] and X1, . . . ,Xi−1 occur in non-
increasing order. These two events are independent
and occur with respective probabilities (1−Xi)

i−1 and
1

(i−1)! ; the expectation of this summand is therefore

1
2i(i−1)!

∫ 1

0
t(1− t)i−1 dt

=
1

2i(i−1)!

∫ 1

0
((1− t)i−1 − (1− t)i)dt

=
1

2i(i−1)!

(
1
i
− 1

i+1

)
=

1
2i(i+1)!

.

Summing over i, we obtain
∞

∑
i=1

1
2i(i+1)!

= 2
∞

∑
i=2

1
2ii!

= 2
(

e1/2 −1− 1
2

)
.

A5 We show that the number in question equals 290. More
generally, let a(n) (resp. b(n)) be the optimal final score
for Alice (resp. Bob) moving first in a position with n
consecutive squares. We show that

a(n) =
⌊n

7

⌋
+a
(

n−7
⌊n

7

⌋)
,

b(n) =
⌊n

7

⌋
+b
(

n−7
⌊n

7

⌋)
,

and that the values for n ≤ 6 are as follows:

n 0 1 2 3 4 5 6
a(n) 0 1 0 1 2 1 2
b(n) 0 1 0 1 0 1 0

Since 2022 ≡ 6 (mod 7), this will yield a(2022) = 2+
⌊ 2022

7 ⌋= 290.

We proceed by induction, starting with the base cases
n ≤ 6. Since the number of odd intervals never de-
creases, we have a(n),b(n) ≥ n− 2⌊ n

2⌋; by looking at
the possible final positions, we see that equality holds
for n = 0,1,2,3,5. For n = 4,6, Alice moving first can
split the original interval into two odd intervals, guar-
anteeing at least two odd intervals in the final position;
whereas Bob can move to leave behind one or two in-
tervals of length 2, guaranteeing no odd intervals in the
final position.

We now proceed to the induction step. Suppose that
n≥ 7 and the claim is known for all m< n. In particular,
this means that a(m) ≥ b(m); consequently, it does not
change the analysis to allow a player to pass their turn
after the first move, as both players will still have an
optimal strategy which involves never passing.

It will suffice to check that

a(n) = a(n−7)+1, b(n) = b(n−7)+1.

Moving first, Alice can leave behind two intervals of
length 1 and n−3. This shows that

a(n)≥ 1+b(n−3) = a(n−7)+1.

On the other hand, if Alice leaves behind intervals of
length i and n − 2 − i, Bob can choose to play in ei-
ther one of these intervals and then follow Alice’s lead
thereafter (exercising the pass option if Alice makes the
last legal move in one of the intervals). This shows that

a(n)≤ max{min{a(i)+b(n−2− i),
b(i)+a(n−2− i)} : i = 0,1, . . . ,n−2}

= a(n−7)+1.

Moving first, Bob can leave behind two intervals of
lengths 2 and n−4. This shows that

b(n)≤ a(n−4) = b(n−7)+1.

On the other hand, if Bob leaves behind intervals of
length i and n− 2− i, Alice can choose to play in ei-
ther one of these intervals and then follow Bob’s lead
thereafter (again passing as needed). This shows that

b(n)≥ min{max{a(i)+b(n−2− i),
b(i)+a(n−2− i)} : i = 0,1, . . . ,n−2}

= b(n−7)+1.

This completes the induction.

A6 First solution. The largest such m is n. To show that
m ≥ n, we take

x j = cos
(2n+1− j)π

2n+1
( j = 1, . . . ,2n).
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