
B2 Determine the maximum value of the sum

S =

∞∑
n=1

n

2n
(a1a2 · · · an)

1/n

over all sequences a1, a2, a3, · · · of nonnegative real numbers satisfying

∞∑
k=1

ak = 1 .

Answer: The maximum value is S =
2

3
; it is achieved by the sequence ak =

3

4k
.

Solution: First consider geometric sequences, which are given by ak = a1r
k−1 for all k, with

0 < r < 1. For such a sequence we have

(a1a2 · · · an)1/n = a1
(
1 · r · · · · · rn−1

)1/n
= a1

(
rn(n−1)/2

)1/n
= a1 r

(n−1)/2 ,

and the constraint
∞∑
k=1

ak = 1 yields a1 = 1− r. Thus we can calculate S as a function of r:

S =

∞∑
n=1

n

2n
(a1a2 · · · an)

1/n
= (1− r)

∞∑
n=1

nr(n−1)/2

2n
=

1− r√
r

∞∑
n=1

n

(√
r

2

)n
=

1− r√
r
f

(√
r

2

)
=

2(1− r)
(2−

√
r)2

, where f(x) =

∞∑
n=1

nxn = x
d

dx

(
1

1− x

)
=

x

(1− x)2
.

By taking the derivative of S with respect to r, which is zero only for r =
1

4
, and comparing

the values of
2(1− r)

(2−
√
r)2

for r = 0, r =
1

4
, and r = 1, we find that the maximum value of S

that can be obtained for a geometric sequence is
2(3/4)

(3/2)2
=

2

3
, for r =

1

4
. It remains to show

that this is actually the maximum value for any sequence.

Given any sequence of nonnegative numbers that sum to 1, consider the geometric mean, say

Gn , of the first n numbers. This can be written as

Gn = (a1a2 · · · an)
1/n

=

[
(4a1) · (42a2) · · · (4nan)

41 · 42 · · · 4n

]1/n
=

1

2n+1

[
(4a1) · (42a2) · · · (4nan)

]1/n
,

and we can then apply the AM-GM inequality to obtain

Gn ≤
1

2n+1

[
(4a1) + (42a2) + · · · + (4nan)

]
n

=
1

n2n+1

n∑
k=1

4kak .

We then have

S =

∞∑
n=1

n

2n
Gn ≤

∞∑
n=1

(
n

2n
· 1

n2n+1

n∑
k=1

4kak

)
=

1

2

∞∑
n=1

n∑
k=1

ak
4n−k

.

This series is absolutely convergent, so we can change the order of summation to get

S ≤ 1

2

∞∑
k=1

∞∑
n=k

ak
4n−k

=
1

2

∞∑
k=1

∞∑
j=0

ak
4j

=
1

2

 ∞∑
j=0

1

4j

[ ∞∑
k=1

ak

]
.

The first bracketed factor is a geometric series with sum
1

1− 1
4

=
4

3
and the second factor is

1 by the given constraint, so S ≤ 2
3 , and we are done.
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B5 Say that an n-by-n matrix A = (aij)1≤i,j≤n with integer entries is very odd if, for every

nonempty subset S of {1, 2, . . . , n}, the |S|-by-|S| submatrix (aij)i,j∈S has odd determinant.

Prove that if A is very odd, then Ak is very odd for every k ≥ 1.

Solution: First of all, because we are only interested in determinants modulo 2, we can reduce

the entries of A modulo 2 ; that is, we may assume that all entries of A are in {0, 1} .

Claim: Under this assumption, a necessary and sufficient condition for A to be very odd is

that there exists a permutation π of {1, . . . , n} such that, when both the rows and columns of

A are permuted by π, A becomes upper triangular with all diagonal entries 1. In other words,

A is very odd if and only if there exists an n-by-n permutation matrix P such that PAP−1 is

upper triangular with 1’s along the diagonal.

Note that if PAP−1 is upper triangular with 1’s along the diagonal, then so is

PAkP−1 = (PAP−1)k. Therefore, the problem statement follows immediately from the claim.

Proof of the claim: To show the condition is sufficient, note that if A is upper triangular with

1’s on the diagonal, then any submatrix (aij)i,j∈S has that same form, so such a submatrix

has determinant 1. Also, permuting the rows and columns of A by a permutation π does not

affect the set of determinants of the submatrices.

Now we show the condition is necessary. Suppose that A is very odd (and has entries from

{0, 1}). By taking the subsets S = {i} of {1, . . . , n}, we see that aii = 1 for all i. Now consider

a two-element subset {i, j}. Because the determinant aiiajj − aijaji must be odd, at least one

of aij and aji must be zero. Define a relation C on {1, . . . , n} by

iC j if and only if aij = 1 .

Then we’ve seen that for i 6= j, we cannot have both i C j and j C i. In fact, we’ll show

that the relation C is acyclic, meaning that there is no cycle i1 C i2 C · · · C ik C i1 with

k > 1 (and i1 6= i2). Suppose we do have such a cycle, and take one for which k is as

small as possible. Consider the submatrix M = (aij)i,j∈S of A corresponding to the subset

S = {i1, i2, . . . , ik}. Then in the expression of det(M) as a sum of signed products of entries of

M , each corresponding to a permutation of S, there will be exactly two nonzero terms, namely

the “diagonal” term ai1i1ai2i2 · · · aikik = 1 and a term ±ai1i2ai2i3 · · · aiki1 = ±1 corresponding

to the cycle. (Any nonzero term in the determinant has to be ± a product of 1’s, and unless

the corresponding permutation is the identity it has at least one nontrivial cycle in its cycle

decomposition, which is then a cycle for C ; because k is as small as possible, this can only be

a k-cycle, which means it must involve all the elements of S, and if it weren’t the original cycle

(i1 i2 · · · ik), it could be used together with the original cycle to construct a shorter cycle for

C .) But then det(M) is even, which is a contradiction.

Because C is acyclic, we can find a permutation π of {1, . . . , n} such that iC j implies

π(i) ≤ π(j). If we then use π to rearrange the rows and columns of A, the new matrix will

have the desired upper triangular form with 1’s on the diagonal. (An explicit procedure for

constructing π is as follows: List the elements of {1, . . . , n} in stages, starting with the elements

- in any order - that have no “predecessors” under the relation C. At each subsequent stage,

list, in any order, the elements all of whose predecessors have already been listed. When the

list is complete, let π(i) be the ith number on the list.)
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B6 Given an ordered list of 3N real numbers, we can trim it to form a list of N numbers as follows:

We divide the list into N groups of 3 consecutive numbers, and within each group, discard the

highest and lowest numbers, keeping only the median.

Consider generating a random number X by the following procedure: Start with a list of 32021

numbers, drawn independently and uniformly at random between 0 and 1. Then trim this list

as defined above, leaving a list of 32020 numbers. Then trim again repeatedly until just one

number remains; let X be this number. Let µ be the expected value of |X − 1
2 |. Show that

µ ≥ 1

4

(
2

3

)2021
.

Solution: First, replace each random number x by z = x− 1/2, which will lie in the interval

[−1/2, 1/2]. Let ρn(z) be the probability density function on that interval for each of the

numbers that remain after n trims. We know that ρ0(z) = 1 because the initial distribution is

uniform. Furthermore, ρn(−z) = ρn(z) for all n, as the process is now symmetric with respect

to the origin. This implies that

∫ 0

− 1
2

ρn(t) dt =

∫ 1
2

0

ρn(t) dt =
1

2
.

We proceed to calculate ρn , the probability density after n trims, from ρn−1 . When we carry

out the nth trim, there are 3! = 6 equivalent orderings of the three numbers in a group, so we

may first assume a fixed ordering of these numbers (specifically, let the first be the median,

the second be the smallest, and the third be the largest) and then multiply by 6 to take the

possible orderings into account. This yields the recursive formula

ρn(z) = 6 ρn−1(z)

[∫ z

− 1
2

ρn−1(t) dt

]∫ 1
2

z

ρn−1(t) dt


= 6 ρn−1(z)

[
1

2
+

∫ z

0

ρn−1(t) dt

] [
1

2
−
∫ z

0

ρn−1(t) dt

]
=

3

2
ρn−1(z)

[
1− 4

(∫ z

0

ρn−1(t) dt

)2 ]
.

It follows that ρn(0) = 3
2ρn−1(0), so by induction on n we have ρn(0) =

(
3
2

)n
. Also by

induction, for n ≥ 1 the function ρn(z) is monotonically decreasing with respect to |z|, and in

particular ρn(z) ≤ ρn(0) =
(
3
2

)n
.

Now let n = 2021, so the expected value µ in the problem is given by

µ =

∫ 1/2

−1/2
|z|ρn(z) dz = 2

∫ 1/2

0

zρn(z) dz .

Let M = ρn(0) =
(
3
2

)2021
. For 0 ≤ z ≤ 1

2 , define the antiderivative

S(z) =

∫ z

t=0

ρn(t) dt of ρn(z) ;

note that

S(0) = 0, S( 1
2 ) =

∫ 1
2

0

ρn(t) dt =
1

2
,
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