Solution 2. Let S(k) denote the sum from the problem statement. Then using basic properties of binomial coefficients, one finds that for $k \ge 0$,

$$S(k+1) = \sum_{j=0}^{k+1} 2^{k+1-j} {\binom{k+1+j}{j}}$$

= $\sum_{j=0}^{k+1} 2^{k+1-j} \left({\binom{k+j}{j}} + {\binom{k+j}{j-1}} \right)$
= $2 \sum_{j=0}^{k+1} 2^{k-j} {\binom{k+j}{j}} + \sum_{j=0}^{k} 2^{k-j} {\binom{k+j+1}{j}}$
= $2 S(k) + {\binom{2k+1}{k+1}} + \frac{1}{2} \left(S(k+1) - {\binom{2k+2}{k+1}} \right)$
= $2 S(k) + \frac{1}{2} S(k+1) + {\binom{2k+1}{k+1}} - \frac{1}{2} {\binom{2k+2}{k+1}}$
= $2 S(k) + \frac{1}{2} S(k+1).$

Therefore S(k+1) = 4 S(k), and since S(0) = 1, by induction we have $O(k) = 4^k$ for all k. Solution 3. Note that the desired sum

$$\sum_{j=0}^{k} 2^{k-j} \binom{k+j}{k} = 2^{k-j} \binom{k+j}{j}$$

is the coefficient place in the polynomial
$$P_{k}(x) = 2^{k} \sum_{j=0}^{2-j} (1+x)^{k+j}$$
$$= 2^{k} (1+x)^{k} \sum_{j=0}^{k} \left(\frac{1+x}{2}\right)^{j}$$
$$= 2^{k} (1+x)^{k} \frac{1-\left(\frac{1+x}{2}\right)^{k+1}}{1-\frac{1+x}{2}}$$
$$= 2^{k+1} (1+x)^{k} \frac{1-\left(\frac{1+x}{2}\right)^{k+1}}{1-x}$$
$$= \left[2^{k+1} (1+x)^{k} - (1+x)^{2k+1}\right] \frac{1}{1-x}$$
$$= \left[2^{k+1} (1+x)^{k} - (1+x)^{2k+1}\right] (1+x+x^{2}+\ldots).$$

But this coefficient can also be expressed as

$$2^{k+1} \sum_{j=0}^{k} \binom{k}{j} - \sum_{j=0}^{k} \binom{2k+1}{j} = 2^{k+1} \cdot 2^{k} - \frac{1}{2} \cdot 2^{2k+1} = 2^{2k} = 4^{k},$$

as claimed.

cases, after making the indicated first move, Alice can use Bob's strategy from the previous paragraph to win.

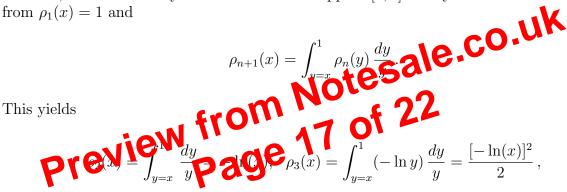
Comment. The game with k pegs and n holes is equivalent to the game with n - k pegs and n holes (moving the k pegs to the right is equivalent to moving the n - k vacant spaces to the left). This symmetry can be used to reduce the three cases considered in the second paragraph to just two.

B3.

Let $x_0 = 1$, and let δ be some constant satisfying $0 < \delta < 1$. Iteratively, for $n = 0, 1, 2, \ldots$, a point x_{n+1} is chosen uniformly from the interval $[0, x_n]$. Let Z be the smallest value of n for which $x_n < \delta$. Find the expected value of Z, as a function of δ .

Answer. The expected value is $1 + \ln(1/\delta)$.

Solution 1. Let $\rho_n(x)$ be the probability density for the location of x_n . Note that $0 \le x_n \le 1$ for all n, so these density functions all have support [0, 1]. They can be found recursively from $\rho_1(x) = 1$ and



which suggests that in general

$$\rho_n(x) = \frac{[-\ln(x)]^{n-1}}{(n-1)!};$$

this is straightforward to check by induction.

Let q_n be the probability that $x_n < \delta$ but $x_{n-1} \ge \delta$, that is, the probability that Z = n. Then $q_1 = \delta$, and for $n \ge 2$ we have

$$q_n = \int_0^{\delta} \rho_n(x) - \rho_{n-1}(x) dx$$

= $\int_0^{\delta} \frac{[-\ln(x)]^{n-1}}{(n-1)!} - \frac{[-\ln(x)]^{n-2}}{(n-2)!} dx$
= $\frac{x[-\ln(x)]^{n-1}}{(n-1)!} \Big|_0^{\delta}$
= $\frac{\delta[-\ln(\delta)]^{n-1}}{(n-1)!}$.

Letting g(t) = f(1/t) and making the substitution u = tx, this becomes

$$g(t) = 1 + \frac{1}{t} \int_{1}^{t} g(u) \, du.$$

Since f is monotone decreasing, g is monotone increasing and hence integrable. Thus it follows from this functional equation that g is continuous for t > 0. Hence the integral in the functional equation is a differentiable function of t, and it follows that g is differentiable.

Multiplying both sides of the functional equation by t and then taking the derivative of both sides leads to

$$g(t) + tg'(t) = 1 + g(t)$$
, so $tg'(t) = 1$.

Integrating and using the initial condition g(1) = 1, we get $g(t) = 1 + \ln t$ and hence $f(\delta) = 1 + \ln(1/\delta)$.

B4. Let *n* be a positive integer, and let V_n be the set of integer (2n + 1)-tuples $\mathbf{v} = (s_0, s_1, \cdots, s_{2n-1}, s_{2n})$ for which $s_0 = s_{2n} = 0$ and $|s_j - s_{j-1}| = 1$ for $j = 1, 2, \cdots, 2n$. Define

$$q(\mathbf{v}) = 1 + \sum_{j=1}^{2n-1} 3^{s_j},$$

and let $M(n)$ be the average of $\frac{1}{q(\mathbf{v})}$ over all $\mathbf{v} \in \mathbf{V}_n \in \mathbf{Sale}$. Co.uk
Evaluate $M(2020).$
Answer. $\frac{1}{4040}$. If $M(n) = \frac{1}{2n}$ for all n , by partitioning V_n into subsets such
that the average of $\frac{1}{q(\mathbf{v})}$ over each subset is $\frac{1}{2n}$. First note that giving an element $\mathbf{v} \in V_n$ is
equivalent to giving a sequence of length $2n$ consisting of symbols U (for "up") and D (for
"down") so that each symbol occurs n times in the sequence; the symbol in position i is U
or D according to whether $s_i - s_{i-1}$ is 1 or -1 . With this representation of elements of V_n ,
there is a natural "cyclic rearrangement" map $\sigma : V_n \to V_n$ which moves each of the symbols
one position back cyclically, that is, the symbol in position 1 moves to position $2n$, and for
every $j > 1$ the symbol in position j moves to position $j-1$. In terms of the $(2n+1)$ -tuples
 $\mathbf{v} = (s_0, s_1, \dots, s_{2n-1}, s_{2n})$, this works out to

 $\sigma(\mathbf{v}) = (t_0, t_1, \cdots, t_{2n-1}, t_{2n})$ where $t_j = s_{j+1} - s_1$,

with the understanding that subscripts are taken modulo 2n. (Note that $t_0 = t_{2n} = 0$ and that $|t_j - t_{j-1}| = |s_{j+1} - s_j| = 1$.)

From the representation using the symbols U and D, we see that $\sigma^{2n}(\mathbf{v}) = \mathbf{v}$. In particular, for any $\mathbf{v} \in V_n$, the list of elements $\mathbf{v}, \sigma(\mathbf{v}), \sigma^2(\mathbf{v}), \ldots, \sigma^{2n-1}(\mathbf{v})$ runs through the orbit under σ of \mathbf{v} a whole number of times. So the average of $\frac{1}{q(\mathbf{w})}$ for \mathbf{w} on that list of elements is the same as the average over the orbit of \mathbf{v} ; because the orbits partition V_n , it is enough to show that this average is $\frac{1}{2n}$ for any \mathbf{v} .