B5 Solution 1. We prove that (j,k) = (2019, 1010) is a valid solution. More generally, let p(x) be the polynomial of degree N such that $p(2n+1) = F_{2n+1}$ for $0 \le n \le N$. We will show that $p(2N+3) = F_{2N+3} - F_{N+2}$.

Define a sequence of polynomials $p_0(x), \ldots, p_N(x)$ by $p_0(x) = p(x)$ and $p_k(x) = p_{k-1}(x) - p_{k-1}(x+2)$ for $k \ge 1$. Then by induction on k, it is the case that $p_k(2n + 1) = F_{2n+1+k}$ for $0 \le n \le N - k$, and also that p_k has degree (at most) N - k for $k \ge 1$. Thus $p_N(x) = F_{N+1}$ since $p_N(1) = F_{N+1}$ and p_N is constant.

We now claim that for $0 \le k \le N$, $p_{N-k}(2k+3) = \sum_{j=0}^{k} F_{N+1+j}$. We prove this again by induction on k: for the induction step, we have

$$p_{N-k}(2k+3) = p_{N-k}(2k+1) + p_{N-k+1}(2k+1)$$
$$= F_{N+1+k} + \sum_{j=0}^{k-1} F_{N+1+j}.$$

Thus we have $p(2N+3) = p_0(2N+3) = \sum_{j=0}^{N} F_{N+1+j}$. Now one final induction shows that $\sum_{j=1}^{m} F_j = F_{m+2} - 1$, and so $p(2N+3) = F_{2N+3} - F_{N+2}$, as claimed. In the case N = 1008, we thus have $p(2019) = F_{2019} - F_{1010}$.

Solution 2. This solution uses the *Lagrange interpolation formula*: given $x_0, ..., x_n$ and $y_0, ..., y_n$, the unique polynomial *P* of degree at most *n* satisfying $P(x_i) = y_i$ for i = 0, ..., n is

$$\sum_{i=0}^{n} P(x_i) \prod_{j \neq i} \frac{x - x_j}{x_i - x_i} = \mathbf{FO}$$
Write **Page**

$$F_n = \frac{1}{\sqrt{5}} (\alpha^n - \beta^{-n}), \qquad \alpha = \frac{1 + \sqrt{5}}{2}, \beta = \frac{1 - \sqrt{5}}{2}.$$

For $\gamma \in \mathbb{R}$, let $p_{\gamma}(x)$ be the unique polynomial of degree at most 1008 satisfying

$$p_1(2n+1) = \gamma^{2n+1}, p_2(2n+1) = \gamma^{2n+1} (n = 0, \dots, 1008);$$

then
$$p(x) = \frac{1}{\sqrt{5}}(p_{\alpha}(x) - p_{\beta}(x))$$

By Lagrange interpolation,

$$p_{\gamma}(2019) = \sum_{n=0}^{1008} \gamma^{2n+1} \prod_{0 \le j \le 1008, j \ne n} \frac{2019 - (2j+1)}{(2n+1) - (2j+1)}$$
$$= \sum_{n=0}^{1008} \gamma^{2n+1} \prod_{0 \le j \le 1008, j \ne n} \frac{1009 - j}{n - j}$$
$$= \sum_{n=0}^{1008} \gamma^{2n+1} (-1)^{1008 - n} {1009 \choose n}$$
$$= -\gamma ((\gamma^2 - 1)^{1009} - (\gamma^2)^{1009}).$$

For $\gamma \in {\alpha, \beta}$ we have $\gamma^2 = \gamma + 1$ and so

$$p_{\gamma}(2019) = \gamma^{2019} - \gamma^{1010}.$$

We thus deduce that $p(x) = F_{2019} - F_{1010}$ as claimed.

Remark. Karl Mahlburg suggests the following variant of this. As above, use Lagrange interpolation to write

$$p(2019) = \sum_{j=0}^{1008} {1009 \choose j} F_j;$$

it will thus suffice to verify (by substituting $j \mapsto 1009 - j$) that

$$\sum_{j=0}^{1009} \binom{1009}{j} F_{j+1} = F_{2019}$$

This identity has the following combinatorial interpretation. Recall that F_{n+1} counts the number of ways to tile a $1 \times n$ rectangle with 1×1 squares and 1×2 dominoes (see below). In any such tiling with n = 2018, let *j* be the number of squares among the first 1009 tiles. These can be ordered in $\binom{1009}{j}$ ways, and the remaining 2018 - j - 2(1009 - j) = j squares can be tiled in F_{j+1} ways.

As an aside, this interpretation of F_{n+1} is the oldest known interpretation of the Fibburgei sequence, long predating Fibonacci bir self, it ancient Sanskrit, syllables were can acied us long or short, and a long syllable war conclusive to be twice as long as a short syllable; to sequently, the number of syllable patterns of total length n equals F_{n+1} . **Remarx** It is not difficult to show that the solution

Remark It is not difficult to show that the solution $F_{j,k} = (2019, 2010)$ is unique (in positive integers). First, note that to have $F_j - F_k > 0$, we must have k < j. If j < 2019, then

$$F_{2019} - F_{1010} = F_{2018} + F_{2017} - F_{1010} > F_j > F_j - F_k.$$

If j > 2020, then

$$F_j - F_k \ge F_j - F_{j-1} = F_{j-2} \ge F_{2019} > F_{2019} - F_{1010}.$$

Since j = 2019 obviously forces k = 1010, the only other possible solution would be with j = 2020. But then

$$(F_i - F_k) - (F_{2019} - F_{1010}) = (F_{2018} - F_k) + F_{1010}$$

which is negative for k = 2019 (it equals $F_{1010} - F_{2017}$) and positive for $k \le 2018$.

B6 Such a set exists for every *n*. To construct an example, define the function $f : \mathbb{Z}^n \to \mathbb{Z}/(2n+1)\mathbb{Z}$ by

$$f(x_1,...,x_n) = x_1 + 2x_2 + \dots + nx_n \pmod{2n+1},$$

then let *S* be the preimage of 0.

To check condition (1), note that if $p \in S$ and q is a neighbor of p differing only in coordinate i, then

$$f(q) = f(p) \pm i \equiv \pm i \pmod{2n+1}$$