B1. Let \mathcal{P} be the set of vectors defined by

$$\mathcal{P} = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \mid 0 \le a \le 2, \ 0 \le b \le 100, \text{ and } a, b \in \mathbb{Z} \right\}.$$

Find all $\mathbf{v} \in \mathcal{P}$ such that the set $\mathcal{P} \setminus {\mathbf{v}}$ obtained by omitting vector \mathbf{v} from \mathcal{P} can be partitioned into two sets of equal size and equal sum.

Answer. The vectors \mathbf{v} of the form $\begin{pmatrix} 1 \\ b \end{pmatrix}$ with b even, $0 \le b \le 100$. Solution. First note that if we add all the vectors in \mathcal{P} by first summing over a for fixed b, we get the sum of $\begin{pmatrix} 3 \\ 3b \end{pmatrix}$ for $0 \le b \le 100$, which is $\begin{pmatrix} 303 \\ 3 \cdot (1 + \dots + 100) \end{pmatrix} = \begin{pmatrix} 303 \\ 3 \cdot 50 \cdot 101 \end{pmatrix}$. Thus if the set $\mathcal{P} \setminus \{\mathbf{v}\}$ is to be partitioned into two sets of equal sum, the vector $\begin{pmatrix} 303 \\ 3 \cdot 50 \cdot 101 \end{pmatrix} - \mathbf{v}$ must have both coordinates even. For $\mathbf{v} = \begin{pmatrix} a \\ b \end{pmatrix}$, this implies that a is odd and b is even, so because $\mathbf{v} \in \mathcal{P}$, we have a = 1, b even, $0 \le b \le 100$. It remains to show that this necessary condition on \mathbf{v} is also sufficient. Identify each of the vectors $\mathbf{w} = \begin{pmatrix} c \\ d \end{pmatrix}$ in \mathcal{P} with the lattice points in $\mathcal{P} \setminus \{\mathbf{v}\}$. If we can number these points $\mathcal{P} = \mathcal{P} + \mathcal{P}_{302}$ such that the sum of the displacement vectors $\overline{P_1P_2}, \overline{P_3P_4}, \ldots, \overline{P_3O_{302}}$ size to the vect a substitution $\mathcal{P} \setminus \{\mathbf{v}\}$ into the set of points P_1 if $\mathbf{v} = \mathbf{v} + \mathbf{v} = \mathbf{v} + \mathbf{v$

$$\left\{ \begin{pmatrix} a \\ b \end{pmatrix} \mid 0 \le a \le 2, \ 0 \le b \le 4, \text{ and } a, b \in \mathbb{Z} \right\}$$

and $\mathbf{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is the missing point, then the second diagram corresponds to the partition of the rectangular set minus that point into the two subsets of equal size and equal sum

$$\{ (0,0), (0,2), (0,4), (1,2), (2,4), (2,2), (2,1) \} \text{ and} \\ \{ (0,1), (0,3), (1,4), (1,1), (2,3), (1,3), (2,0) \},$$

which contain the starting and end points, respectively, of the displacement vectors shown.