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much cleaner variant of this approach (suggested on
AoPS, user henrikjb) is to write

tan−1(x) =
∫ y

0

1
1+ y2 dy

and do a change of variable on the resulting double in-
tegral.

A4 The minimum number of tiles is mn. To see that this
many are required, label the squares (i, j) with 1 ≤ i ≤
2m−1 and 1≤ j≤ 2n−1, and for each square with i, j
both odd, color the square red; then no tile can cover
more than one red square, and there are mn red squares.

It remains to show that we can cover any (2m− 1)×
(2n− 1) rectangle with mn tiles when m,n ≥ 4. First
note that we can tile any 2× (2k− 1) rectangle with
k ≥ 3 by k tiles: one of the first type, then k− 2 of the
second type, and finally one of the first type. Thus if we
can cover a 7×7 square with 16 tiles, then we can do the
general (2m−1)× (2n−1) rectangle, by decomposing
this rectangle into a 7×7 square in the lower left corner,
along with m− 4 (2× 7) rectangles to the right of the
square, and n−4 ((2m−1)×2) rectangles above, and
tiling each of these rectangles separately, for a total of
16+4(m−4)+m(n−4) = mn tiles.

To cover the 7×7 square, note that the tiling must con-
sist of 15 tiles of the first type and 1 of the second type,
and that any 2×3 rectangle can be covered using 2 tiles
of the first type. We may thus construct a suitable cov-
ering by covering all but the center square with eight
2× 3 rectangles, in such a way that we can attach the
center square to one of these rectangles to get a shape
that can be covered by two tiles. An example of such
a covering, with the remaining 2× 3 rectangles left in-
tact for visual clarity, is depicted below. (Many other
solutions are possible.)

A5 First solution: For s∈G and r a positive integer, define
a representation of s of length r to be a sequence of

values m1,n1, . . . ,mr,nr ∈ {−1,1} for which

s = gm1hn1 · · ·gmr hnr .

We first check that every s ∈ G admits at least one rep-
resentation of some length; this is equivalent to saying
that the set S of s ∈ G which admit representations of
some length is equal to G itself. Since S is closed un-
der the group operation and G is finite, S is also closed
under formation of inverses and contains the identity
element; that is, S is a subgroup of G. In particular, S
contains not only gh but also its inverse h−1g−1; since
S also contains g−1h, we deduce that S contains g−2.
Since g is of odd order in G, g−2 is also a generator of
the cyclic subgroup containing g; it follows that g ∈ S
and hence h ∈ S. Since we assumed that g,h generate
G, we now conclude that S = G, as claimed.

To complete the proof, we must now check that for each
s∈G, the smallest possible length of a representation of
s cannot exceed |G|. Suppose the contrary, and let

s = gm1hn1 · · ·gmr hnr

be a representation of the smallest possible length. Set

si = gm1hn1 · · ·gmihni (i = 0, . . . ,r−1),

interpreting s0 as e; since r > |G| by hypothesis, by the
pigeonhole principle there must exist indices 0 ≤ i <
j ≤ r−1 such that si = s j. Then

s = gm1hn1 · · ·gmihnigm j+1hn j+1 · · ·gmr hnr

is another representation of s of length strictly less than
r, a contradiction.

Remark: If one considers s1, . . . ,sr instead of
s0, . . . ,sr−1, then the case s = e must be handled sep-
arately: otherwise, one might end up with a represen-
tation of length 0 which is disallowed by the problem
statement.

Reinterpretation: Note that the elements
gh,gh−1,g−1h,g−1h−1 generate gh(g−1h)−1 = g2

and hence all of G (again using the hypothesis that g
has odd order, as above). Form the Cayley digraph on
the set G, i.e., the directed graph with an edge from s1 to
s2 whenever s2 = s1∗ for ∗ ∈ {gh,gh−1,g−1h,g−1h−1}.
Since G is finite, this digraph is strongly connected:
there exists at least one path from any vertex to any
other vertex (traveling all edges in the correct direc-
tion). The shortest such path cannot repeat any vertices
(except the starting and ending vertices in case they
coincide), and so has length at most |G|.
Second solution: For r a positive integer, let Sr be the
set of s ∈ G which admit a representation of length at
most r (terminology as in the first solution); obviously
Sr ⊆ Sr+1. We will show that Sr 6= Sr+1 unless Sr = G;
this will imply by induction on r that #Sr ≥min{r, |G|}
and hence that Sr = G for some r ≤ |G|.
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