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corresponding to the cases where π(1),π(2) = 1,2;
where π(1),π(2),π(3) = 1,3,2; and the unique case
1,3,5, . . . ,6,4,2. Meanwhile, one has

R′n = R′n−1 +Q′n−2

corresponding to the cases containing 3,1,2,4 (where
removing 1 and reversing gives a permutation counted
by R′n−1); and where 4 occurs before 3,1,2 (where re-
moving 1,2 and reversing gives a permutation counted
by Q′n−2).

Remark: The permutations counted by Pn are known as
key permutations, and have been studied by E.S. Page,
Systematic generation of ordered sequences using re-
currence relations, The Computer Journal 14 (1971),
no. 2, 150–153. We have used the same notation for
consistency with the literature. The sequence of the Pn
also appears as entry A003274 in the On-line Encyclo-
pedia of Integer Sequences (http://oeis.org).

B6 (from artofproblemsolving.com) We will prove
that the sum converges to π2/16. Note first that the
sum does not converge absolutely, so we are not free to
rearrange it arbitrarily. For that matter, the standard al-
ternating sum test does not apply because the absolute
values of the terms does not decrease to 0, so even the
convergence of the sum must be established by hand.

Setting these issues aside momentarily, note that the el-
ements of the set counted by A(k) are those odd posi-
tive integers d for which m = k/d is also an integer and
d <
√

2dm; if we write d = 2`− 1, then the condition
on m reduces to m≥ `. In other words, the original sum
equals

S1 :=
∞

∑
k=1

∑
`≥1,m≥`

k=m(2`−1)

(−1)m−1

m(2`−1)
,

and we would like to rearrange this to

S2 :=
∞

∑
`=1

1
2`−1

∞

∑
m=`

(−1)m−1

m
,

in which both sums converge by the alternating sum
test. In fact a bit more is true: we have∣∣∣∣∣ ∞

∑
m=`

(−1)m−1

m

∣∣∣∣∣< 1
`
,

so the outer sum converges absolutely. In particular, S2
is the limit of the truncated sums

S2,n = ∑
`(2`−1)≤n

1
2`−1

∞

∑
m=`

(−1)m−1

m
.

To see that S1 converges to the same value as S2, write

S2,n−
n

∑
k=1

(−1)k−1 A(k)
k

= ∑
`(2`−1)≤n

1
2`−1

∞

∑
m=b n

2`−1+1c

(−1)m−1

m
.

The expression on the right is bounded above in abso-
lute value by the sum ∑`(2`−1)≤n

1
n , in which the number

of summands is at most
√

n (since
√

n(2
√

n− 1) ≥ n),
and so the total is bounded above by 1/

√
n. Hence the

difference converges to zero as n→ ∞; that is, S1 con-
verges and equals S2.

We may thus focus hereafter on computing S2. We be-
gin by writing

S2 =
∞

∑
`=1

1
2`−1

∞

∑
m=`

(−1)m−1
∫ 1

0
tm−1 dt.

Our next step will be to interchange the inner sum and
the integral, but again this requires some justification.

Lemma 1. Let f0, f1, . . . be a sequence of continuous func-
tions on [0,1] such that for each x ∈ [0,1], we have

f0(x)≥ f1(x)≥ ·· · ≥ 0.

Then

∞

∑
n=0

(−1)n
∫ 1

0
fn(t)dt =

∫ 1

0

(
∞

∑
n=0

(−1)n fn(t)

)
dt

provided that both sums converge.

Proof. Put gn(t) = f2n(t)− f2n+1(t)≥ 0; we may then rewrite
the desired equality as

∞

∑
n=0

∫ 1

0
gn(t)dt =

∫ 1

0

(
∞

∑
n=0

gn(t)

)
dt,

which is a case of the Lebesgue monotone convergence theo-
rem.

By Lemma 1, we have

S2 =
∞

∑
`=1

1
2`−1

∫ 1

0

(
∞

∑
m=`

(−1)m−1tm−1

)
dt

=
∞

∑
`=1

1
2`−1

∫ 1

0

(−t)`−1

1+ t
dt.

Since the outer sum is absolutely convergent, we may
freely interchange it with the integral:

S2 =
∫ 1

0

(
∞

∑
`=1

1
2`−1

(−t)`−1

1+ t

)
dt

=
∫ 1

0

1√
t(1+ t)

(
∞

∑
`=1

(−1)`−1t`−1/2

2`−1

)
dt

=
∫ 1

0

1√
t(1+ t)

arctan(
√

t)dt

=
∫ 1

0

2
1+u2 arctan(u)du (u =

√
t)

= arctan(1)2− arctan(0)2 =
π2

16
.
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