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A1 Suppose otherwise. Then each vertex v is a vertex for
five faces, all of which have different labels, and so the
sum of the labels of the five faces incident to v is at least
0+1+2+3+4= 10. Adding this sum over all vertices
v gives 3×39 = 117, since each face’s label is counted
three times. Since there are 12 vertices, we conclude
that 10×12≤ 117, contradiction.

Remark: One can also obtain the desired result by
showing that any collection of five faces must contain
two faces that share a vertex; it then follows that each
label can appear at most 4 times, and so the sum of all
labels is at least 4(0+1+2+3+4) = 40 > 39, contra-
diction.

A2 Suppose to the contrary that f (n) = f (m) with n < m,
and let n ·a1 · · ·ar, m ·b1 · · ·bs be perfect squares where
n < a1 < · · ·< ar, m < b1 < · · ·< bs, ar,bs are minimal
and ar = bs. Then (n · a1 · · ·ar) · (m · b1 · · ·bs) is also a
perfect square. Now eliminate any factor in this product
that appears twice (i.e., if ai = b j for some i, j, then
delete ai and b j from this product). The product of what
remains must also be a perfect square, but this is now a
product of distinct integers, the smallest of which is n
and the largest of which is strictly smaller than ar = bs.
This contradicts the minimality of ar.

Remark: Sequences whose product is a perfect square
occur naturally in the quadratic sieve algorithm for fac-
toring large integers. However, the behavior of the func-
tion f (n) seems to be somewhat erratic. Karl Mahlburg
points out the upper bound f (n)≤ 2n for n ≥ 5, which
holds because the interval (n,2n) contains an integer of
the form 2m2. A trivial lower bound is f (n) ≥ n+ p
where p is the least prime factor of n. For n = p prime,
the bounds agree and we have f (p) = 2p. For more
discussion, see https://oeis.org/A006255.

A3 Suppose on the contrary that a0 + a1y + · · ·+ anyn is
nonzero for 0 < y < 1. By the intermediate value theo-
rem, this is only possible if a0+a1y+ · · ·+anyn has the
same sign for 0 < y < 1; without loss of generality, we
may assume that a0+a1y+ · · ·+anyn > 0 for 0< y< 1.
For the given value of x, we then have

a0xm +a1x2m + · · ·+anx(n+1)m ≥ 0

for m= 0,1, . . . , with strict inequality for m> 0. Taking
the sum over all m is absolutely convergent and hence
valid; this yields

a0

1− x
+

a1

1− x2 + · · ·+ an

1− xn+1 > 0,

a contradiction.

A4 Let w′1, . . . ,w
′
k be arcs such that: w′j has the same length

as w j; w′1 is the same as w1; and w′j+1 is adjacent to
w′j (i.e., the last digit of w′j comes right before the first
digit of w′j+1). Since w j has length Z(w j)+N(w j), the
sum of the lengths of w1, . . . ,wk is k(Z+N), and so the
concatenation of w′1, . . . ,w

′
k is a string of k(Z +N) con-

secutive digits around the circle. (This string may wrap
around the circle, in which case some of these digits
may appear more than once in the string.) Break this
string into k arcs w′′1 , . . . ,w

′′
k each of length Z +N, each

adjacent to the previous one. (Note that if the num-
ber of digits around the circle is m, then Z + N ≤ m
since Z(w j) + N(w j) ≤ m for all j, and thus each of
w′′1 , . . . ,w

′′
k is indeed an arc.)

We claim that for some j = 1, . . . ,k, Z(w′′j ) = Z and
N(w′′j ) = N (where the second equation follows from
the first since Z(w′′j ) + N(w′′j ) = Z + N). Otherwise,
since all of the Z(w′′j ) differ by at most 1, either
Z(w′′j ) ≤ Z − 1 for all j or Z(w′′j ) ≥ Z + 1 for all j.
In either case, |kZ − ∑ j Z(w′j)| = |kZ − ∑ j Z(w′′j )| ≥
k. But since w1 = w′1, we have |kZ − ∑ j Z(w′j)| =
|∑k

j=1(Z(w j) − Z(w′j))| = |∑k
j=2(Z(w j) − Z(w′j))| ≤

∑
k
j=2 |Z(w j)−Z(w′j)| ≤ k−1, contradiction.

A5 Let A1, . . . ,Am be points in R3, and let n̂i jk denote a
unit vector normal to ∆AiA jAk (unless Ai,A j,Ak are
collinear, there are two possible choices for n̂i jk). If n̂ is
a unit vector in R3, and Πn̂ is a plane perpendicular to
n̂, then the area of the orthogonal projection of ∆AiA jAk
onto Πn̂ is Area(∆AiA jAk)|n̂i jk · n̂|. Thus if {ai jk} is area
definite for R2, then for any n̂,

∑ai jkArea(∆AiA jAk)|n̂i jk · n̂| ≥ 0.

Note that integrating |n̂i jk · n̂| over n̂ ∈ S2, the unit
sphere in R3, with respect to the natural measure on
S2 gives a positive number c, which is independent of
n̂i jk since the measure on S2 is rotation-independent.
Thus integrating the above inequality over n̂ gives
c∑ai jkArea(∆AiA jAk)≥ 0. It follows that {ai jk} is area
definite for R3, as desired.

Remark: It is not hard to check (e.g., by integration
in spherical coordinates) that the constant c occurring
above is equal to 2π . It follows that for any convex body
C in R3, the average over n̂ of the area of the projection
of C onto Πn̂ equals 1/4 of the surface area of C.

More generally, let C be a convex body in Rn. For n̂
a unit vector, let Πn̂ denote the hyperplane through the
origin perpendicular to n̂. Then the average over n̂ of the
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