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volumes sum to V . Then on one hand,

n

∑
i=1

4
3

πr3
i =V.

On the other hand, the intersection of a ball of radius r
with the plane containing F is a disc of radius at most r,
which covers a piece of F of area at most πr2; therefore

n

∑
i=1

πr2
i ≥ A.

By writing n as ∑
n
i=1 1 and applying Hölder’s inequality,

we obtain

nV 2 ≥

(
n

∑
i=1

(
4
3

πr3
i

)2/3
)3

≥ 16
9π

A3.

Consequently, any value of c(P) less than 16
9π

A3 works.

B3 The answer is yes. We first note that for any collection
of m days with 1 ≤ m ≤ 2n− 1, there are at least m
distinct teams that won a game on at least one of those
days. If not, then any of the teams that lost games on
all of those days must in particular have lost to m other
teams, a contradiction.

If we now construct a bipartite graph whose vertices are
the 2n teams and the 2n−1 days, with an edge linking
a day to a team if that team won their game on that day,
then any collection of m days is connected to a total of at
least m teams. It follows from Hall’s Marriage Theorem
that one can match the 2n−1 days with 2n−1 distinct
teams that won on their respective days, as desired.

B4 First solution. We will show that the answer is yes.
First note that for all x >−1, ex ≥ 1+ x and thus

x≥ log(1+ x). (2)

We next claim that an > log(n+ 1) (and in particular
that an− logn > 0) for all n, by induction on n. For
n = 0 this follows from a0 = 1. Now suppose that
an > log(n+ 1), and define f (x) = x + e−x, which is
an increasing function in x > 0; then

an+1 = f (an)> f (log(n+1))
= log(n+1)+1/(n+1)≥ log(n+2),

where the last inequality is (2) with x = 1/(n+1). This
completes the induction step.

It follows that an− logn is a decreasing function in n:
we have

(an+1− log(n+1))− (an− logn)

= e−an + log(n/(n+1))
< 1/(n+1)+ log(n/(n+1))≤ 0,

where the final inequality is (2) with x = −1/(n+ 1).
Thus {an− logn}∞

n=0 is a decreasing sequence of posi-
tive numbers, and so it has a limit as n→ ∞.

Second solution. Put bn = ean , so that bn+1 = bne1/bn .
In terms of the bn, the problem is to prove that bn/n has
a limit as n→ ∞; we will show that the limit is in fact
equal to 1.

Expanding e1/bn as a Taylor series in 1/bn, we have

bn+1 = bn +1+Rn

where 0≤ Rn ≤ c/bn for some absolute constant c > 0.
By writing

bn = n+ e+
n−1

∑
i=0

Ri,

we see first that bn ≥ n+ e. We then see that

0≤ bn

n
−1

≤ e
n
+

n−1

∑
i=0

Ri

n

≤ e
n
+

n−1

∑
i=0

c
nbi

≤ e
n
+

n−1

∑
i=0

c
n(i+ e)

≤ e
n
+

c logn
n

.

It follows that bn/n→ 1 as n→ ∞.

Remark. This problem is an example of the general
principle that one can often predict the asymptotic be-
havior of a recursive sequence by studying solutions of
a sufficiently similar-looking differential equation. In
this case, we start with the equation an+1− an = e−an ,
then replace an with a function y(x) and replace the dif-
ference an+1−an with the derivative y′(x) to obtain the
differential equation y′ = e−y, which indeed has the so-
lution y = logx.

B5 Define the function

f (x) = sup
s∈R
{x logg1(s)+ logg2(s)}.

As a function of x, f is the supremum of a collection of
affine functions, so it is convex. The function e f (x) is
then also convex, as may be checked directly from the
definition: for x1,x2 ∈ R and t ∈ [0,1], by the weighted
AM-GM inequality

te f (x1)+(1− t)e f (x2) ≥ et f (x1)+(1−t) f (x2)

≥ e f (tx1+(1−t)x2).

For each t ∈ R, draw a supporting line to the graph of
e f (x) at x = t; it has the form y = xh1(t)+h2(t) for some
h1(t),h2(t) ∈ R. For all x, we then have

sup
s∈R
{g1(s)xg2(s)} ≥ xh1(t)+h2(t)
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