B-5 **First solution.** The answer is no. Suppose otherwise. For the condition to make sense, f must be differentiable. Since f is strictly increasing, we must have $f'(x) \ge 0$ for all x. Also, the function f'(x) is strictly increasing: if y > x then f'(y) = f(f(y)) > f(f(x)) =f'(x). In particular, f'(y) > 0 for all $y \in \mathbb{R}$.

For any $x_0 \ge -1$, if $f(x_0) = b$ and $f'(x_0) = a > 0$, then f'(x) > a for $x > x_0$ and thus $f(x) \ge a(x - x_0) + b$ for $x \ge x_0$. Then either $b < x_0$ or $a = f'(x_0) = f(f(x_0)) = f(b) \ge a(b - x_0) + b$. In the latter case, $b \le a(x_0 + 1)/(a+1) \le x_0 + 1$. We conclude in either case that $f(x_0) \le x_0 + 1$ for all $x_0 \ge -1$.

It must then be the case that $f(f(x)) = f'(x) \le 1$ for all x, since otherwise f(x) > x + 1 for large x. Now by the above reasoning, if $f(0) = b_0$ and f'(0) = $a_0 > 0$, then $f(x) > a_0x + b_0$ for x > 0. Thus for $x > \max\{0, -b_0/a_0\}$, we have f(x) > 0 and f(f(x)) > $a_0x + b_0$. But then f(f(x)) > 1 for sufficiently large x, a contradiction.

Second solution. (Communicated by Catalin Zara.) Suppose such a function exists. Since f is strictly increasing and differentiable, so is $f \circ f = f'$. In particular, f is twice differentiable; also, f''(x) =f'(f(x))f'(x) is the product of two strictly increasing nonnegative functions, so it is also strictly increasing and nonnegative. In particular, we can choose $\alpha > 0$ and $M \in \mathbb{R}$ such that $f''(x) > 4\alpha$ for all $x \ge M$. Then for all $x \ge M$,

$$f(x) \ge f(M) + f'(M)(x - M) + 2x(x - M)$$

In particular, for s all $x \ge 10^{-10}$.

Pick T > 0 so that $\alpha T^2 > M'$. Then for $x \ge T$, f(x) > M' and so $f'(x) = f(f(x)) \ge \alpha f(x)^2$. Now

$$\frac{1}{f(T)} - \frac{1}{f(2T)} = \int_{T}^{2T} \frac{f'(t)}{f(t)^2} dt \ge \int_{T}^{2T} \alpha dt$$

however, as $T \to \infty$, the left side of this inequality tends to 0 while the right side tends to $+\infty$, a contradiction.

Third solution. (Communicated by Noam Elkies.) Since *f* is strictly increasing, for some y_0 , we can define the inverse function g(y) of *f* for $y \ge y_0$. Then

x = g(f(x)), and we may differentiate to find that 1 = g'(f(x))f'(x) = g'(f(x))f(f(x)). It follows that g'(y) = 1/f(y) for $y \ge y_0$; since *g* takes arbitrarily large values, the integral $\int_{y_0}^{\infty} dy/f(y)$ must diverge. One then gets a contradiction from any reasonable lower bound on f(y) for *y* large, e.g., the bound $f(x) \ge \alpha x^2$ from the second solution. (One can also start with a linear lower bound $f(x) \ge \beta x$, then use the integral expression for *g* to deduce that $g(x) \le \gamma \log x$, which in turn forces f(x)to grow exponentially.)

B–6 For any polynomial p(x), let [p(x)]A denote the $n \times n$ matrix obtained by replacing each entry A_{ij} of A by $p(A_{ij})$; thus $A^{[k]} = [x^k]A$. Let $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ denote the characteristic polynomial of A. By the Cayley-Hamilton theorem,

$$0 = A \cdot P(A)$$

= $A^{n+1} + a_{n-1}A^n + \dots + a_0A$
= $A^{[n+1]} + a_{n-1}A^{[n]} + \dots + a_0A^{[1]}$
= $[xp(x)]A$.

Thus each entry of A is a root of the polynomial xp(x). Now suppose $m \ge n + 1$ Sher

Now suppose
$$m \ge n + 1$$
 one $a_{m+1}^{(m)}(x) | A$
= $A^{[m+1]} + a_{n-1}A^{[m]} + \dots + a_0A^{[m+1-n]}$

since c entry of A is a root of $x^{m+1-n}P(x)$. On the other hand,

$$0 = A^{m+1-n} \cdot P(A)$$

= $A^{m+1} + a_{n-1}A^m + \dots + a_0A^{m+1-n}$.

Therefore if $A^k = A^{[k]}$ for $m + 1 - n \le k \le m$, then $A^{m+1} = A^{[m+1]}$. The desired result follows by induction on *m*.

Remark. David Feldman points out that the result is best possible in the following sense: there exist examples of $n \times n$ matrices A for which $A^k = A^{[k]}$ for k = 1, ..., n but $A^{n+1} \neq A^{[n+1]}$.