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B–5 First solution. The answer is no. Suppose otherwise.
For the condition to make sense, f must be differen-
tiable. Since f is strictly increasing, we must have
f ′(x) ≥ 0 for all x. Also, the function f ′(x) is strictly
increasing: if y > x then f ′(y) = f ( f (y)) > f ( f (x)) =
f ′(x). In particular, f ′(y)> 0 for all y ∈ R.

For any x0 ≥−1, if f (x0) = b and f ′(x0) = a > 0, then
f ′(x) > a for x > x0 and thus f (x) ≥ a(x− x0)+ b for
x ≥ x0. Then either b < x0 or a = f ′(x0) = f ( f (x0)) =
f (b) ≥ a(b− x0) + b. In the latter case, b ≤ a(x0 +
1)/(a+ 1) ≤ x0 + 1. We conclude in either case that
f (x0)≤ x0 +1 for all x0 ≥−1.

It must then be the case that f ( f (x)) = f ′(x) ≤ 1 for
all x, since otherwise f (x) > x + 1 for large x. Now
by the above reasoning, if f (0) = b0 and f ′(0) =
a0 > 0, then f (x) > a0x + b0 for x > 0. Thus for
x > max{0,−b0/a0}, we have f (x)> 0 and f ( f (x))>
a0x+b0. But then f ( f (x)) > 1 for sufficiently large x,
a contradiction.

Second solution. (Communicated by Catalin Zara.)
Suppose such a function exists. Since f is strictly
increasing and differentiable, so is f ◦ f = f ′. In
particular, f is twice differentiable; also, f ′′(x) =
f ′( f (x)) f ′(x) is the product of two strictly increasing
nonnegative functions, so it is also strictly increasing
and nonnegative. In particular, we can choose α > 0
and M ∈ R such that f ′′(x) > 4α for all x ≥ M. Then
for all x≥M,

f (x)≥ f (M)+ f ′(M)(x−M)+2α(x−M)2.

In particular, for some M′ > M, we have f (x)≥ αx2 for
all x≥M′.

Pick T > 0 so that αT 2 > M′. Then for x ≥ T , f (x) >
M′ and so f ′(x) = f ( f (x))≥ α f (x)2. Now

1
f (T )

− 1
f (2T )

=
∫ 2T

T

f ′(t)
f (t)2 dt ≥

∫ 2T

T
α dt;

however, as T →∞, the left side of this inequality tends
to 0 while the right side tends to +∞, a contradiction.

Third solution. (Communicated by Noam Elkies.)
Since f is strictly increasing, for some y0, we can de-
fine the inverse function g(y) of f for y ≥ y0. Then

x = g( f (x)), and we may differentiate to find that
1 = g′( f (x)) f ′(x) = g′( f (x)) f ( f (x)). It follows that
g′(y) = 1/ f (y) for y≥ y0; since g takes arbitrarily large
values, the integral

∫
∞

y0
dy/ f (y) must diverge. One then

gets a contradiction from any reasonable lower bound
on f (y) for y large, e.g., the bound f (x)≥ αx2 from the
second solution. (One can also start with a linear lower
bound f (x)≥ βx, then use the integral expression for g
to deduce that g(x) ≤ γ logx, which in turn forces f (x)
to grow exponentially.)

B–6 For any polynomial p(x), let [p(x)]A denote the n× n
matrix obtained by replacing each entry Ai j of A by
p(Ai j); thus A[k] = [xk]A. Let P(x) = xn + an−1xn−1 +
· · ·+ a0 denote the characteristic polynomial of A. By
the Cayley-Hamilton theorem,

0 = A ·P(A)
= An+1 +an−1An + · · ·+a0A

= A[n+1]+an−1A[n]+ · · ·+a0A[1]

= [xp(x)]A.

Thus each entry of A is a root of the polynomial xp(x).

Now suppose m≥ n+1. Then

0 = [xm+1−nP(x)]A

= A[m+1]+an−1A[m]+ · · ·+a0A[m+1−n]

since each entry of A is a root of xm+1−nP(x). On the
other hand,

0 = Am+1−n ·P(A)
= Am+1 +an−1Am + · · ·+a0Am+1−n.

Therefore if Ak = A[k] for m + 1− n ≤ k ≤ m, then
Am+1 = A[m+1]. The desired result follows by induction
on m.

Remark. David Feldman points out that the result is
best possible in the following sense: there exist ex-
amples of n× n matrices A for which Ak = A[k] for
k = 1, . . . ,n but An+1 6= A[n+1].
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