product of the orders of all of its elements cannot be a
power of 2.

We may thus consider only abelian 2-groups hereafter.
For such a group G, the product of the orders of all of
its elements has the form 2%(%) for some nonnegative
integer G, and we must show that it is impossible to
achieve k(G) = 2009. Again by the structure theorem,
we may write

G= H(Z/Z VAR

for some nonnegative integers e, ez, ...,
many of which are 0.

all but finitely

For any nonnegative integer m, the elements of G of
order at most 2" form a subgroup isomorphic to

(Z/zmln{z m}Z)

s

1

which has 2°¢ elements for s, = Y~ min{i,m}e;.
Hence

k(G) = i i(2% —2%-1).

Since 51 <3 <---, k(G) + 1 is always divisible by 2°1.
In particular, k(G) = 2009 forces s; < 1.

However, the only cases where s1 <1 ar

the ¢; are 0, in which case k {v\m
h1 ase k(G

some iand e; =0 for j

1)2/ + 1. The \i% rictly in
ofz @ forz—Sand?
it can ffever equal 2009. This proves the claim.

Remark. One can also arrive at the key congruence
by dividing G into equivalence classes, by declaring
two elements to be equivalent if they generate the same
cyclic subgroup of G. For i > 0, an element of order
2" belongs to an equivalence class of size 2"~!, so the
products of the orders of the elements of this equiva-
lence class is 2/ for j = h2"~!. This quantity is divisible
by 4 as long as & > 1; thus to have k(G) =1 (mod 4),
the number of elements of G of order 2 must be con-
gruent to 1 modulo 4. However, there are exactly 2¢ — 1
such elements, for e the number of cyclic factors of G.
Hence e = 1, and one concludes as in the given solution.

A—6 We disprove the assertion using the example
fy) =3(1+y)(2x—1)>—

We have b —a = d — ¢ = 0 because the identity f(x,y) =
f(1 —x,y) forces a = b, and because

1
c:/ 3(2x—1)%dx =1,
0

d:/o'](6(2x— 1)~ 1)dx=1.

Moreover, the partial derivatives

%(Xo»’o) =3(14y0)(8x0 —4)

d
%(ﬂ)v)’()) =3(2x 1)1

have no common zero in (0,1)2. Namely, for the first
partial to vanish, we must have xo = 1/2 since 1 + yy is
nowhere zero, but for xo = 1/2 the second partial cannot
vanish.

Remark. This problem amounts to refuting a potential
generalization of the Mean Value Theorem to bivariate
functions. Many counterexamples are possible. Kent
Merryfield suggests ysin(27x), for which all four of the
boundary integrals vanish; here the partial derivatives
are 2mycos(27x) and sin(27x). Catalin Zara suggests
x!'/3y2/3 Qingchun Ren suggests xy(1 — y).

Every positive rational number can be uniquely written
in lowest terms as a/b for a,b positive integers. We
prove the statement in the problem by induction on the
largest prime dividing either a orgb (where this is con-
sidered to be 1 if a=b = 1@%16 base case, we
can write 1/1 = 2! al a/b, let p be the

i @ r'a or b; thena/b pkd' /v
d positive integers a’, b’ whose largest
actors are strictly less than p. We now have

%, and all prime factors of @' and

a/b =p!)* (p
IRV are strictly less than p. By the induction as-

/ . .
#)'kh/ can be written as a quotient of prod-

ucts of prime factorials, and so a/b = (p!)* W can
as well. This completes the induction.

Remark. Noam Elkies points out that the representa-
tions are unique up to rearranging and canceling com-
mon factors.

The desired real numbers c are precisely those for which
1/3 < ¢ < 1. For any positive integer m and any se-
quence 0 =xp < x1 < -+ < X,y = 1, the cost of jumping
along this sequence is Y™, (x; — x;—1)x?. Since

we can only achieve costs ¢ for which 1/3 < ¢ < 1.

It remains to check that any such ¢ can be achieved.
Suppose 0 = xp < -+ < x,, = 1 is a sequence with m >
1. Fori=1,...,m, let ¢; be the cost of the sequence
0,xi,Xi+1,-..,%n. Fori>1and 0 <y <x;_1, the cost of
the sequence 0,y,x;, ..., X, is

2

ity + (5 —y)f —x =i —y(x] =),



