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w1, . . . ,wn be the projections of e1, . . . ,en. If the desired
condition is not achieved, we can choose i, j such that

|wi|2 <
1
n
(|w1|2 + · · ·+ |wn|2)< |w j|2.

By precomposing with a suitable rotation that fixes
eh for h 6= i, j, we can vary |wi|, |w j| without varying
|wi|2 + |w j|2 or |wh| for h 6= i, j. We can thus choose
such a rotation to force one of |wi|2, |w j|2 to become
equal to 1

n (|w1|2 + · · ·+ |wn|2). Repeating at most n−1
times gives the desired configuration.

B–4 We use the identity given by Taylor’s theorem:

h(x+ y) =
deg(h)

∑
i=0

h(i)(x)
i!

yi.

In this expression, h(i)(x)/i! is a polynomial in x with
integer coefficients, so its value at an integer x is an
integer.

For x = 0, . . . , p−1, we deduce that

h(x+ p)≡ h(x)+ ph′(x) (mod p2).

(This can also be deduced more directly using the bino-
mial theorem.) Since we assumed h(x) and h(x + p)
are distinct modulo p2, we conclude that h′(x) 6≡ 0
(mod p). Since h′ is a polynomial with integer coef-
ficients, we have h′(x) ≡ h′(x+mp) (mod p) for any
integer m, and so h′(x) 6≡ 0 (mod p) for all integers x.

Now for x = 0, . . . , p2−1 and y = 0, . . . , p−1, we write

h(x+ yp2)≡ h(x)+ p2yh′(x) (mod p3).

Thus h(x),h(x+ p2), . . . ,h(x+(p−1)p2) run over all of
the residue classes modulo p3 congruent to h(x) mod-
ulo p2. Since the h(x) themselves cover all the residue
classes modulo p2, this proves that h(0), . . . ,h(p3− 1)
are distinct modulo p3.

Remark: More generally, the same proof shows that
for any integers d,e > 1, h permutes the residue classes
modulo pd if and only if it permutes the residue classes
modulo pe. The argument used in the proof is related
to a general result in number theory known as Hensel’s
lemma.

B–5 The functions f (x) = x+ n and f (x) = −x+ n for any
integer n clearly satisfy the condition of the problem;
we claim that these are the only possible f .

Let q = a/b be any rational number with gcd(a,b) = 1
and b > 0. For n any positive integer, we have

f ( an+1
bn )− f ( a

b )
1
bn

= bn f
(

an+1
bn

)
−nb f

(a
b

)
is an integer by the property of f . Since f is differ-
entiable at a/b, the left hand side has a limit. It fol-
lows that for sufficiently large n, both sides must be

equal to some integer c = f ′( a
b ): f ( an+1

bn ) = f ( a
b )+

c
bn .

Now c cannot be 0, since otherwise f ( an+1
bn ) = f ( a

b ) for
sufficiently large n has denominator b rather than bn.
Similarly, |c| cannot be greater than 1: otherwise if we
take n = k|c| for k a sufficiently large positive integer,
then f ( a

b ) +
c

bn has denominator bk, contradicting the
fact that f ( an+1

bn ) has denominator bn. It follows that
c = f ′( a

b ) =±1.

Thus the derivative of f at any rational number is ±1.
Since f is continuously differentiable, we conclude that
f ′(x) = 1 for all real x or f ′(x) =−1 for all real x. Since
f (0) must be an integer (a rational number with denom-
inator 1), f (x)= x+n or f (x)=−x+n for some integer
n.

Remark: After showing that f ′(q) is an integer for each
q, one can instead argue that f ′ is a continuous function
from the rationals to the integers, so must be constant.
One can then write f (x) = ax+b and check that b ∈ Z
by evaluation at a = 0, and that a =±1 by evaluation at
x = 1/a.

B–6 In all solutions, let Fn,k be the number of k-limited per-
mutations of {1, . . . ,n}.
First solution: (by Jacob Tsimerman) Note that any
permutation is k-limited if and only if its inverse is k-
limited. Consequently, the number of k-limited per-
mutations of {1, . . . ,n} is the same as the number of
k-limited involutions (permutations equal to their in-
verses) of {1, . . . ,n}.
We use the following fact several times: the number of
involutions of {1, . . . ,n} is odd if n = 0,1 and even oth-
erwise. This follows from the fact that non-involutions
come in pairs, so the number of involutions has the same
parity as the number of permutations, namely n!.

For n≤ k+1, all involutions are k-limited. By the pre-
vious paragraph, Fn,k is odd for n = 0,1 and even for
n = 2, . . . ,k+1.

For n > k + 1, group the k-limited involutions into
classes based on their actions on k + 2, . . . ,n. Note
that for C a class and σ ∈ C, the set of elements of
A = {1, . . . ,k+ 1} which map into A under σ depends
only on C, not on σ . Call this set S(C); then the size of
C is exactly the number of involutions of S(C). Conse-
quently, |C| is even unless S(C) has at most one element.
However, the element 1 cannot map out of A because we
are looking at k-limited involutions. Hence if S(C) has
one element and σ ∈C, we must have σ(1) = 1. Since
σ is k-limited and σ(2) cannot belong to A, we must
have σ(2) = k+ 2. By induction, for i = 3, . . . ,k+ 1,
we must have σ(i) = k+ i.

If n < 2k+ 1, this shows that no class C of odd cardi-
nality can exist, so Fn,k must be even. If n ≥ 2k + 1,
the classes of odd cardinality are in bijection with k-
limited involutions of {2k + 2, . . . ,n}, so Fn,k has the
same parity as Fn−2k−1,k. By induction on n, we deduce
the desired result.
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