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wi,...,w, be the projections of ey, ..., e,. If the desired
condition is not achieved, we can choose i, j such that

wil? <~ (|W1|2+ A wal?) < .

By precomposing with a suitable rotation that fixes
ey for h # i, j, we can vary |w;|,|w;| without varying
lwi|? + || or [wp| for h #i,j. We can thus choose
such a rotation to force one of |w;|*,|w;|* to become
equal to 1 (|wi[>+--+|w,|?). Repeating at most n — 1
times gives the desired configuration.

We use the identity given by Taylor’s theorem:

hix+y) = Z

In this expression, 4()(x)/i! is a polynomial in x with
integer coefficients, so its value at an integer x is an
integer.

Forx=0,...,p— 1, we deduce that

h(x) + ph' (x)

(This can also be deduced more directly using the bino-
mial theorem.) Since we assumed h(x) and h(x—|— p
are distinct modulo p?, we conclude that 4'(x

(mod p). Since /' is a polynomlal with intege co
Y(}o\

h(x+p) = (mod p?).

ficients, we have h'(x) = h x + m
integer m, and so ' (x

Now for x = q \q@
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Thus h(x),h(x+p?),...,h(x+ (p—1)p?) run over all of
the residue classes modulo p* congruent to /(x) mod-
ulo p?. Since the h(x) themselves cover all the residue
classes modulo p?, this proves that 4(0),...,h(p> — 1)
are distinct modulo p3.

egers X.

Remark: More generally, the same proof shows that
for any integers d,e > 1, h permutes the residue classes
modulo p? if and only if it permutes the residue classes
modulo p¢. The argument used in the proof is related
to a general result in number theory known as Hensel’s
lemma.

The functions f(x) = x+n and f(x) = —x+n for any
integer n clearly satisfy the condition of the problem;
we claim that these are the only possible f.

Let ¢ = a/b be any rational number with ged(a,b) = 1
and b > 0. For n any positive integer, we have

f(ar;;l)l_f(%) . f(an:1> _nbf(g)

bn

is an integer by the property of f. Since f is differ-
entiable at a/b, the left hand side has a limit. It fol-
lows that for sufficiently large n, both sides must be

equal to some integer ¢ = f/(4): f(4t) = f(4)+ £.
Now c cannot be 0, since otherwise f (“”“) = f(%) for
sufficiently large n has denominator b rather than bn.
Similarly, |c| cannot be greater than 1: otherwise if we
take n = k|c| for k a sufficiently large positive integer,
then f(§) + 5. has denominator bk, contradicting the
fact that f (“'I’}—*n'l) has denominator bn. It follows that
c=f(8) =

Thus the derivative of f at any rational number is £1.
Since f is continuously differentiable, we conclude that

f'(x)=1forall real x or f’(x) = —1 for all real x. Since
/(0) must be an integer (a rational number with denom-
inator 1), f(x) =x+nor f(x) = —x+n for some integer
n.

Remark: After showing that f’(g) is an integer for each
g, one can instead argue that f’ is a continuous function
from the rationals to the integers, so must be constant.
One can then write f(x) = ax+ b and check that b € Z
by evaluation at a = 0, and that @ = +1 by evaluation at
x=1/a.

B-6 In all solutions, let F,, & be the number of k-limited per-

mutations of {1,..

First solutlon (by, Ca@ T&Aﬁn) Note that any
1t

permutatlo and only if its inverse is k-
mﬁg wently, the number of k-limited per-
of {1,...,n} is the same as the number of

1m1 %mvolutlons (permutations equal to their in-

use the following fact several times: the number of
1nvolut10ns of {1,...,n} isodd if n = 0,1 and even oth-
erwise. This follows from the fact that non-involutions
come in pairs, so the number of involutions has the same
parity as the number of permutations, namely n!.

For n < k+ 1, all involutions are k-limited. By the pre-
vious paragraph, Fy; is odd for n = 0,1 and even for
n=2,....,k+1.

For n > k+ 1, group the k-limited involutions into
classes based on their actions on k + 2,...,n. Note
that for C a class and o € C, the set of elements of
A={1,...,k+ 1} which map into A under o depends
only on C, not on ¢. Call this set S(C); then the size of
C is exactly the number of involutions of S(C). Conse-
quently, |C| is even unless S(C) has at most one element.
However, the element 1 cannot map out of A because we
are looking at k-limited involutions. Hence if S(C) has
one element and ¢ € C, we must have (1) = 1. Since
0 is k-limited and ¢(2) cannot belong to A, we must
have 0(2) = k+ 2. By induction, for i =3,...,k+1,
we must have o (i) = k+1.

If n < 2k + 1, this shows that no class C of odd cardi-
nality can exist, so F;, ; must be even. If n > 2k +1,
the classes of odd cardinality are in bijection with k-
limited involutions of {2k +2,...,n}, so F,; has the
same parity as F,_o;_1 x. By induction on n, we deduce
the desired result.



