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6 CHAPTER 1. VECTOR SPACES

(&) The vectors/,Vo,...,V, arelinearly independentf, whenever we have
scalarscy, Co, . . ., Cp Satisfying

C1V1+CoVo+ - +CaVp =0,
then necessarilgy =c, =--- =0.

(b) The vectoryy,vo, ..., Vv, arespanningf, for every vectow € V, we can find
scalars, Cp, ... ,Ch € K such that

V=C1V1+CoV2+ -+ CnVn.
In this case, we writ¥/ = (v1,Vo,..., V).
(c) The vectoryy,vs,...,Vv, form abasisfor V if they are linearly independent

and spanning.

Remark Linear independence is a property dist of vectors. A list co@r:mg
the zero vector is never linearly independent. Also, alisti |n e vector

occurs more than once is never linearly independ
| will say “Let B= (vy,...,vn) be a ba fﬁa fhat the list of vectors

V1,...,Vqis a basis, and to refer w@
Definition 1.4 “7 tor s CeG\, t&d&i We say thaV is finite-
dlme I‘e find v cto Pi; n € V which form a basis foV.

P Remark In theg @‘9 we are only concerned with finite-dimensional vector
spaces. If you study Functional Analysis, Quantum Mechanics, or various other
subjects, you will meet vector spaces which are not finite dimensional.

Proposition 1.1 The following three conditions are equivalent for the vectors
Vi,...,Vy Of the vector space V ovél:

(@) wi,...,vnhis abasis;

(b) wi,...,vnhis amaximal linearly independent set (that is, if we add any vector
to the list, then the result is no longer linearly independent);

(¢) w,...,vyis a minimal spanning set (that is, if we remove any vector from
the list, then the result is no longer spanning).

The next theorem helps us to understand the properties of linear independence.
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Theorem 1.2 (The Exchange Lemma)LetV be a vector space ovEr. Suppose
that the vectorsy. .., v, are linearly independent, and that the vectoks w. , w,
are linearly independent, where mn. Then we can find a number iwith<i <m
such that the vectorgy...,v,,w; are linearly independent.

In order to prove this, we need a lemma about systems of equations.

Lemma 1.3 Given a systemx{

apX1+aiXe+ - +amXm = 0,
a1X1 +apXp+ - +am¥m = 0,

aniXy+anpXe+---+anmXm = 0

of homogeneous linear equations, where the number n of equations is strictly less
than the number m of variables, there exists a non-zero solgtion. ., xy) (that
IS, X1, . ..,Xm are not all zero).

Proof This is proved by induction on the number of varlaﬁ{ef ngefﬁments
ai1,a1,...,an Of xq are all zero, then putting, = er variables zero
gives a solution. If one of these coeffl ! @ n zer en we can use the

corresponding equation t S of th oﬁe’r bles, obtaining
n—1 equatlons imMmc— %ﬁﬁ) By ypyth Zm—1. So by the
induction se new e ati ave a non-zero solution. Computing
the m é.ylves a som@ riginal equations.

Now we turn to the proof of the Exchange Lemma. Let us argue for a contra-
diction, by assuming that the result is false: that is, assume that none of the vectors
w; can be added to the listy, . .., vy) to produce a larger linearly independent list.
This means that, for alj, the list(v1,...,vy,w;) is linearly dependent. So there
are coefficientgs,...,cy,d, not all zero, such that

C1V1+ -+ CnVn+dw = 0.

We cannot havel = O; for this would mean that we had a linear combination of
vi,...,Vn equal to zero, contrary to the hypothesis that these vectors are linearly
independent. So we can divide the equation througt, land takew; to the other

side, to obtain (changing notation slightly)

n
Wi = agiV1+8giV2 + - +8niVn = ajiVj.
=1
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Remark We allow the possibility that a vector space has dimension zero. Such
a vector space contains just one vector, the zero vector 0; a basis for this vector
space consists of the empty set.

Now letV be ann-dimensional vector space oVEr This means that there is a
basisvy, Vo, ..., Vv, for V. Since this list of vectors is spanning, every vestarV
can be expressed as

V=_C1V1+CoVo+---+ChVp

for some scalarss, Cy,...,Cc, € K. The scalarg;,...,c, are thecoordinatesof
v (with respect to the given basis), and t@ordinate representatioaf v is the
n-tuple

(€1,Cp,...,Cn) € K",

Now the coordinate representation is uniqueor suppose that we also had
V= CjV1+ ChVo+ -+ + CVi

for scalarsy, ¢, . .., c,. Subtracting these two expressions, we obtain u\(

O=(ci—c)vi+(Ca—CH)Va+ -+ (Ch= ,ﬁ\e C

Now the vectorsvl,vz .,Vp are line W—X‘e@t S Aequatlon implies
thatc;—c; =0,c0— ¢, = Oﬁ‘.@ that is 0’2
\e\ll\l c1, ?z lAf Cn—

w |t is easy to chﬂ@' hen we add two vector¥ jnwe add their
coordinate representations &' (using coordinatewise addition); and when we
multiply a vectorv € V by a scalarc, we multiply its coordinate representation
by c. In other words, addition and scalar multiplicatiorMriranslate to the same
operations on their coordinate representations. This is why we only need to con-
sider vector spaces of the forfK', as in Example 1.2.

Here is how the result would be stated in the language of abstract algebra:

Theorem 1.5 Any n-dimensional vector space over a fiElds isomorphic to the
vector spacé".

1.3 Row and column vectors

The elements of the vector spdk8 are all then-tuples of scalars from the field
K. There are two different ways that we can represent-tuple: as a row, or as
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In matrix form, this says

C1 dy
=Pl [,
Cnh dn
or in other words
Vs =P Vg,

as required.

In this course, we will see four ways in which matrices arise in linear algebra.
Here is the first occurrencenatrices arise as transition matrices between bases
of a vector space.

The next corollary summarises how transition matrices behave.|Hiemotes
theidentity matrix the matrix having 1s on the main diagonal and Os everywhere
else. Given a matriR, we denote by~ theinverseof P, the matrixQ satisfying
PQ= QP =1. Not every matrix has an inverse: we say tRais invertible or
non-singularif it has an inverse.

Corollary 1.7 Let B B',B” be bases of the vector space VCO \)\(
(@ Re=1. Sa\
\LS
(b) Brg=(Rep) ™ N 'X_ILA
© R i Fﬂ
P ( ehil‘ollows m@% (}fg Proposition. For example, for (b) we have
Vs

Me=PRegMs, Ve =PyglVs

SO
Vg = Psg'Ps g [V]B-

By the uniqueness of the coordinate representation, wefay€y g =|.

Corollary 1.8 The transition matrix between any two bases of a vector space is
invertible.

This follows immediately from (b) of the preceding Corollary.

Remark We see that, to express the coordinate representation w.r.t. the new
basis in terms of that w.r.t. the old one, we need the inverse of the transition matrix:

[V] B = PE:IJ?;’ [V]B.
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Theorem 2.1 Let A be an nx n matrix over the field. Then it is possible to
change A into B by elementary row and column operations, where B is a matrix
of the same size satisfying B- 1 for 0 <i <r, for r < min{m,n}, and all other
entries of B are zero.

If A can be reduced to two matrices B antiti®th of the above form, where
the numbers of non-zero elements are r an@spectively, by different sequences
of elementary operations, then=rr’, and so B=B'.

Definition 2.4 The number in the above theorem is called thenk of A; while
a matrix of the form described f@ is said to be in theanonical form for equiv-
alence We can write the canonical form matrix in “block form” as

I 0
>[5 ]

wherel; is anr x r identity matrix andO denotes a zero matrix of the appropriate
size (thatisr x (n—r), (m—r) xr,and(m—r) x (n—r) respectively for the thre
Os). Note that some or all of thes¥s may be missing: for example, r|f=6 \@V

just havelly,  O]. \e

Proof We outline the proof that the re SSIb|e prove that we al-
ways get the same value f(a ar rr&

The proof is b [%Mfg rﬁ)% ti&=in other words, we
assume aét otheS|s aller matrix can be reduced as in the

thet@r(

e If A= O (the all-zero matrix), then the conclusion of the theorem holds,
with r = 0; no reduction is required. So assume #at O.

matnA@ proceed in steps as follows:

e If A11 # 0, then skip this step. K11 = 0, then there is a non-zero element
Ajj somewhere i\, by swapping the first anidh rows, and the first anfth
columns, if necessary (Type 3 operations), we can bring this entry into the
(1,1) position.

e Now we can assume that; # 0. Multiplying the first row byAl‘ll, (row
operation Type 2), we obtain a matrix wifj; = 1

e Now by row and column operations of Type 1, we can assume that all the
other elements in the first row and column are zero. Fdéyjf# 0, then
subtractingds j times the first column from thith gives a matrix withA; ; =
0. Repeat this until all non-zero elements have been removed.
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corresponds to the elementary column operation of adding twice the first column
to the second, or to the elementary row operation of adding twice the second
row to the first. For the other types, the matrices for row operations and column
operations are identical.

Lemma 2.2 The effect of an elementary row operation on a matrix is the same as
that of multiplying on the left by the corresponding elementary matrix. Similarly,
the effect of an elementary column operation is the same as that of multiplying on
the right by the corresponding elementary matrix.

The proof of this lemma is somewhat tedious calculation.

Example 2.3 We continue our previous example. In order, here is the list of
elementary matrices corresponding to the operations we appl&dkere 2x 2
matrices are row operations whilex33 matrices are column operations).

1 -2 0] [1 0 -3 10 0
o 1 o/,|]0 1 0 [_14 cl)][é _5/3],0 1 -2
o 0 1| |0 0 1

001.\)\(

So the whole process can be written as a matrix equatlon CO .

s L ;ﬂ{*« o

or more S|mply -

S wﬁ’ .

where, as before,

1 2 3 100
A:L 5 6}’ B:[o 1 o}

An important observation about the elementary operations is that each of them
can have its effect undone by another elementary operation of the same kind,
and hence every elementary matrix is invertible, with its inverse being another
elementary matrix of the same kind. For example, the effect of adding twice the
first row to the second is undone by adding times the first row to the second,

so that L
1 2" |1 -2
0 1 |10 1|

Since the product of invertible matrices is invertible, we can state the above theo-
rem in a more concise form. First, one more definition:
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Definition 2.5 Them x n matricesA andB are said to bequivalentf B = PAQ,
whereP andQ are invertible matrices of sizes x mandn x n respectively.

Theorem 2.3 Given any nmx n matrix A, there exist invertible matrices P and Q
of sizes nx m and nx n respectively, such that PAQ is in the canonical form for
equivalence.

Remark The relation “equivalence” defined above is an equivalence relation on
the set of alimx n matrices; that is, it is reflexive, symmetric and transitive.

When mathematicians talk about a “canonical form” for an equivalence re-
lation, they mean a set of objects which are representatives of the equivalence
classes: that s, every object is equivalent to a unique object in the canonical form.
We have shown this for the relation of equivalence defined earlier, except for the
uniqueness of the canonical form. This is our job for the next section.

2.3 Rank

We have the unfinished business of showing that the raﬁ@ MIX is well de-
fined; that is, no matter how we do the row a ction, we end up with

re
the same canonical form. We %&ﬁ){@ WO further kinds of rank, and

proving that all three are t

Deflnltlon tXXe%m X @ﬁ }'CIK We say that theolumn
m axim % linearly independent columngoivhile
w rank of A?r@@ m number of linearly independent row&ofWe

regard columns dr rows as vectorsifi' andK" respectively.)
Now we need a sequence of four lemmas.

Lemma 2.4 (a) Elementary column operations don’t change the column rank
of a matrix.

(b) Elementary row operations don’t change the column rank of a matrix.
(c) Elementary column operations don’t change the row rank of a matrix.

(d) Elementary row operations don’t change the row rank of a matrix.

Proof (a) This is clear for Type 3 operations, which just rearrange the vectors.
For Types 1 and 2, we have to show that such an operation cannot take a linearly
independent set to a linearly dependent setyibe versastatement holds because

the inverse of an elementary operation is another operation of the same kind.
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So suppose that, ..., v, are linearly independent. Consider a Type 1 oper-
ation involving addingc times thejth column to theth; the new columns are
Vi, ..., Vn, Wherev, = v for k # i, while vi = v; + cv;. Suppose that the new vec-
tors are linearly dependent. Then there are scalars.,a,, not all zero, such
that

= alV1+"‘+ai(Vi+CVj)+"'+ajVj+"'+anVn
= avi+---+avi+---+(aj+ca)vj+---+anvn.

Sincevs,. ..,V are linearly independent, we conclude that
a=0,...,4=0,...,a+¢cg=0,...,an =0,

from which we see that all tha, are zero, contrary to assumption. So the new
columns are linearly independent.
The argument for Type 2 operations is similar but easier.
(b) Itis easily checked that, if an elementary row operation is applied, H@S‘Q
he

new vectors satisfy exactly the same linear relations as the old &Qt
same linear combinations are zero). So the linearly mﬁ\ S

don’t change at all.
ote>

) S (b), b lied to
R zzg'\:(;&w £ 125

of vectors

Theorem trix A, t the column rank, and the rank are
all eg)a |cular t pendent of the row and column operations
used'to compute it.

Proof Suppose that we reduéeto canonical fornB by elementary operations,
whereB has rank. These elementary operations don’t change the row or column
rank, by our lemma; so the row ranksAandB are equal, and their column ranks
are equal. But it is trivial to see that, if

i o
>[5 9]

then the row and column ranks Bfare both equal to. So the theorem is proved.

We can get an extra piece of information from our deliberations.Alle¢ an
invertible n x n matrix. Then the canonical form & is justl: its rank is equal
to n. This means that there are matriégandQ, each a product of elementary
matrices, such that

PAQ=I,.



24 CHAPTER 2. MATRICES AND DETERMINANTS

In symbols,
(Gi,¢j) — (i, ¢j+Gi) — (=G, ¢j +¢i) — (cj, ¢ +Gi) — (Cj, ).

The first, third and fourth steps don’t change the valu®pfvhile the second
multiplies it by —1.

Now we take the matrid and apply elementary column operations to it, keep-
ing track of the factors by whicB gets multiplied according to rules (a)—(c). The
overall effect is to multiplyD(A) by a certain non-zero scalerdepending on the
operations.

e If Alis invertible, then we can reduck to the identity, so thatD(A) =
D(I) =1, whenceD(A) = ¢ L.

e If Ais notinvertible, then its column rank is less tharSo the columns oA
are linearly dependent, and one column can be written as a linear combina-
tion of the others. Applying axiom (D1), we see tii4{A) is a linear com-
bination of valueD(A'), whereA' are matrlces with two equal cQlumns; so
D(A") = 0 for all suchA’, whenceD(A (\(

This proves that the determinant functlon if A que We show its
existence in the next section, by glvm rmulae for it.

Given the uniq e@g@\ in tf\&%AV\/e now denote it b¥)det
instead ofD %I\? fth ?r e& n important corollary:
P f@\lr 9 A@Jﬁ@

Proof See the case division at the end of the proof of the theorem.

vertible if and only detA) # O.

One of the most important properties of the determinant is the following.
Theorem 2.10 If Aand B are n< n matrices oveK, thendet AB) = det A) det(B).

Proof Suppose first thaB is not invertible. Then d¢B) = 0. Also, ABis not
invertible. (For, suppose théAB) ! = X, so thatX AB=|. ThenX Ais the inverse
of B.) So detAB) = 0, and the theorem is true.

In the other caseB is invertible, so we can apply a sequence of elementary
column operations t@ to get to the identity. The effect of these operations is
to multiply the determinant by a non-zero factofdepending on the operations),
so thatcdetB) =1, orc = (det(B)) 1. Now these operations are represented by
elementary matrices; so we see tB& = |, whereQ is a product of elementary
matrices.
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Spanning: Take any vector in [m), sayw. Thenw = a(v) for somev € V.
Write v in terms of the basis for:

V:alul+"'+aqu+C1V1+"'+CsVs
for someay,...,aq,Cy,...,Cs. Applying o, we get
w = o(v)

= apor(uy) +---+aqa(ug) +croe(vy) + - - - + Cs0(Vs)
= CiW1+ -+ CsWs,

sincea(u;) =0 (asu; € Ker(a)) anda(vi) = w;. So the vectorsy, ..., Ws
span Infa).

Thus, p(a) =dim(Im(a)) =s. Sincev(a) = q andq+s= dim(V), the
theorem is proved.

3.2 Representation by matrices O u\(

We come now to the second role of matrices in Ilng&eey represent
linear maps between vector spaces

Leta'VeWbeaIinearmam _ma az@é_n As we
saw in the first section, w dW.in @& o) te representation:
V =Km™andW = @‘\t ents of tﬁa spaces being represented as
col rd basis f@r(so thate is the vector

with 0 rdlnate 1an coordlnates zero), &nd.., f, the standard
basis foV. Then fori =1,..., m, the vectora (g ) belongs toV, so we can write
it as a linear combination df, ..., f,.

Definition 3.4 The matrix representing the linear mep V — W relative to the
baseB = (ey,...,ey) forV andC = (fy,..., fy) for W is then x m matrix whose
(i, ]) entry isaj, where

n
&)= ajif]
=1
forj=1...,n

In practice this means the following. Takee ) and write it as a column vector

gy ay - ani]T. This vector is theth column of the matrix representirg
So, for example, iln=3,n=2, and

(X(e]_) = fl—l— f2, (X(ez) = 2f1+5f2, 05(63) = 3f1— f2,
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Proposition 3.7 Two matrices represent the same linear map with respect to dif-
ferent bases if and only if they are equivalent.

This holds because

e transition matrices are always invertible (the inverségg is the matrix
Py g for the transition in the other direction); and

e any invertible matrix can be regarded as a transition matrix: for, ihthe
matrix P is invertible, then its rank ig, so its columns are linearly inde-
pendent, and form a basi for K"; and thenP = Bs g, whereB is the
“standard basis”.

3.4 Canonical form revisited

Now we can give a simpler proof of Theorem 2.3 about canonical form for equiv-
alence. First, we make the following observation.

bases for V and W such that the matrix representxng

o\°
£ of® }“ of 124
evieW
ProPXs in the proof o@@gs 2, choose a basis .., us for Ker(a), and

extend to a basisy, ..., Us,Vv1,...,V for V. Thena(vi),...,a(v) is a basis for
Im(e), and so can be extended to a bas{s1),...,0(Vr),X1,...,% for W. Now
we will use the bases

Theorem 3.8 Letx : V — W be a linear map of rankt p( ; eg;l e‘\é\‘

Vi, .., Vi, Vri1 = U1, ..., Vias=Ws for V,
w1 =0o(V1),...,.Wr = @(Vy),Wr11=Xq,...,Wrps=Xs for W.

(Vi) = w ifl1<i<r,
710 otherwise;

so the matrix ofx relative to these bases is

5 o

as claimed.
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Proposition 4.3 Let a be a linear map on'V which is represented by the matrix A
relative to a basis B, and by the matrix wlative to a basis B Let P=Ps g be
the transition matrix between the two bases. Then

AN =P AP
Proof This is just Proposition 4.6, siné@andQ are the same here.

Definition 4.2 Two n x n matricesA andB are said to beimilar if B= P 1AP
for some invertible matri®.

Thus similarity is an equivalence relation, and

two matrices are similar if and only if they represent the same linear
map with respect to different bases.

There is no simple canonical form for similarity like t f\)¥mvalence
that we met earlier. For the rest of this sectlon %@k eC|aI class of ma-
trices or linear maps, the “diagonalisa e we do have a nice simple

representative of the similarit ﬁ@ flnal fzﬂ)n we give without proof a
ﬁlﬁi ers

general result for
P@@ Elger@@@%d eigenvectors

Definition 4.3 Let a be a linear map oW. A vectorv €V is said to be an
eigenvectornf o, with eigenvaluel € K, if v# 0 ando(v) = Av. The set{v:
a(v) = AV} consisting of the zero vector and the eigenvectors with eigenvalue
is called theA-eigenspacef «.

Note that we require that# O; otherwise the zero vector would be an eigen-
vector for any value oft. With this requirement, each eigenvector has a unique
eigenvalue: for ifa(v) = Av = uv, then(A —u)v =0, and so (since # 0) we
haved = u.

The nameeigenvaludas a mixture of German and English; it means “charac-
teristic value” or “proper value” (here “proper” is used in the sense of “property”).
Another term used in older books is “latent root”. Here “latent” means “hidden”:
the idea is that the eigenvalue is somehow hidden in a matrix representaryl
we have to extract it by some procedure. We’'ll see how to do this soon.
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for any vectow € V; and, ifv,w # 0, then we define the angle between them to be

0, where
V- W

coy = .
[V].|w|

For this definition to make sense, we need to know that
—|V].w| <v-w < V. [wl

for any vectors/,w (since co® lies between-1 and 1). This is the content of the
Cauchy-Schwarz inequality

Theorem 6.1 If v,w are vectors in an inner product space then
(V-W)2 < (v-v)(w-w).

Proof By definition, we havev+ xw) - (v+xw) > 0 for any real numbex. Ex-
panding, we obtain

X2 (W- W) 4 2X(V- W) + (V- V) > O CO u\(

This is a quadratic function ir Since iti or all req) either it has
no real roots, or it has two equ &E us |ts iscriminant is non-positive,

st

There is essehtially only one kind of inner product on a real vector space.

Definition 6.2 A basis(vy,...,Vy) for an inner product space is callecthonor-
malif vi - vj = g;j (the Kronecker delta) for £i, j <n.

Remark: If vectorsvy,..., vy, satisfyy; - vj = §ij, then they are necessarily lin-
early independent. For suppose tbat + - - - + cpv, = 0. Taking the inner product
of this equation withy;, we find thatc; = 0, for alli.

Theorem 6.2 Let- be an inner product on a real vector space V. Then there is an
orthonormal basigvs,...,vy) for V. If we represent vectors in coordinates with
respect to this basis, sayv[x1 X ... Xi]  andw=[y1 yo ... a]',
then

VW= X1Y1 +X2Yy2 + - + XnYn.
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Proof This follows from our reduction of quadratic forms in the last chapter.
Since the inner product is bilinear, the functigfv) = v-v = |v|? is a quadratic
form, and so it can be reduced to the form

A=)+ G~ = K

Now we must have = nandt = 0. For, ift > 0, then thes+ 1st basis vectovs, 1

satisfiesvs; 1 - Vs 1 = —1; while if s+t < n, then thenth basis vectow, satisfies
Vh - Vp = 0. Either of these would contradict the positive definitenesg.oNow

we have

g(X1,---,%n) :x%+---+xﬁ,

and by polarisation we find that

b((X1,-..,%n), (Y1,---,¥n)) = XaY1 + - - + Xn¥n,

as required.
However, it is possible to give a more direct proof of the theorem; thi
important because it involves a constructive method for finding an6th n %ﬁl
basis, known as th@ram—-Schmidt process
Letw,...,w, be any basis fo¥. The Gram— {@g@kgss works as fol-
lows. NO
e Sincew; # 0, w \i&ﬁ“ @Yg\[hat

‘Vl‘ =1t

?O(I = ,n, Iet\@a.gq w;)vi. Then

VoW =V Wi — (Vo -Wj)(vy-vy) =0

fori=2,...,n.
e Now apply the Gram—Schmidt process recursivelp®, ..., w;,).

Since we replace these vectors by linear combinations of themselves, their inner
products withv; remain zero throughout the process. So if we end up with vectors
Vo,...,Vn, thenvy-vi =0fori=2,...,n. By induction, we can assume thatvj =

gj fori,j=2,...,n; by what we have said, this holdsiibr j is 1 as well.

Definition 6.3 The inner product ofR" for which the standard basis is orthonor-
mal (that is, the one given in the theorem) is calleddtaandard inner produobn
R".
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U, and so lie inJ*; and they are clearly linearly independent. Now suppose that
we U+ andw= S GiVi, where(vy, ..., Vy) is the orthonormal basis we constructed.
Thenci=w-v;=0fori=1,...,r; sowis a linear combination of the last—r
basis vectors, which thus form a basiélf. Hence dinfU-) = n—r, as required.

Now the last statement of the proposition follows from the proof, since we
have a basis fov which is a disjoint union of bases for andU .

Recall the connection between direct sum decompositions and projections. If
we have projectionB;, ..., whose sum is the identity and which sati§f{; =
Ofori # j, then the spac¥ is the direct sum of their images. This can be refined
in an inner product space as follows.

Definition 7.2 LetV be an inner product space. A linear napV — V is an
orthogonal projectionf

(a) ris a projection, that isg? = «;
(b) = is self-adjoint, that isg* = & (wherer*(v) -w=v- 77:( ) for all v,w € V).
Proposition 7.2 If & is an orthogonal prOJectlon thelker(m

@M
Proof We know thatv = Ker(r) & Im(x we only av M ese two
subspaces are orthogonal. So taIeKer é , andw € Im(r),

so thatw = z(u) forsomeu V. T rg)

O

as requweé { O /{

Pf Mlt nr.3 g orthogonal projections on an inner product
pace V satlsfy “m =1 and mr; = O for i # j. Let U = Im(m)
fori=1,....r. Then
V=UoU® - Uy,
and if uy € Uj and y € Uj, then yand y; are orthogonal.

Proof The fact thatV is the direct sum of the images of the follows from
Proposition 5.2. We only have to prove the last part. So takendu; as in the
Proposition, say; = 7 (v) anduj = mj(w). Then

Ui -uj = m (V) - (W) = 77 (V) - T (W) = v- 7 (7 (W)) =0,

where the second equality holds singes self-adjoint and the third is the defini-
tion of the adjoint.

A direct sum decomposition satisfying the conditions of the theorem is called
anorthogonal decompositioof V.

Conversely, if we are given an orthogonal decompositiol ofhen we can
find orthogonal projections satisfying the hypotheses of the theorem.
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Proof This is obvious since ib is alternating them;; = b(vj,vi) = —b(vi,vj) =
—&j anda; = b(vi,v;) = 0.

So we can write our theorem in matrix form as follows:

Theorem 9.4 Let A be an alternating matrix (or a skew-symmetric matrix over a
field whose characteristic is not equal 291 Then there is an invertible matrix P

such that P AP is the matrix with s block _1 é on the diagonal and all other

entries zero. Moreover the number s is half the rank of A, and so is independent
of the choice of P.

Proof We know that the effect of a change of basis with transition m&tisto
replace the matri@ representing a bilinear form " AP. Also, the matrix in the
statement of the theorem is just the matrix represeriinglative to the special
basis that we found in the preceding theorem.

This has a corollary which is a bit surprising at first sight:

Corollary 9.5 (a) The rank of a skew-symmetric matrix (over a field of char-
acteristic not equal t@) is even.

(b) The determinant of a skew-symmetric matrix (ove (chracterlstlc
not equal ta2) is a square, and is zero if th‘. matnx is odd.

Proof (a) The canonical f E}tﬁ\ clea y s’%&
(b) If the ske e% is si eterminant is zero,
which is a squ Qm‘uppose t % @ert e. Then its canonical form has

= @ &(@ } al. Each of these blocks has determinant 1,

and hence so does the whole matrix. SqEEAP) = detP)?detA) = 1, whence
det(A) = 1/(det(P)?), which is a square.
If the sizen of Ais odd, then the rank cannot bgby (a)), and so déf) =

Remark There is a function defined on skew-symmetric matrices called the
Pfaffian which like the determinant is a polynomial in the matrix entries, and
has the property that de&) is the square of the Pfaffian &€ that is, detA) =

(Pf(A))?.
For example,
0 a b ¢
0 a —a 0 d e
Pf{_a 0] =a, Pf b -d 0 f =af —be+cd.
—-c -e —f O

(Check that the determinant of the second matrigais— be-+ cd)?.)
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APPENDIX D. WHO IS TOP OF THE LEAGUE?



Appendix F

Worked examples

1. Let

1 2 4 -1 5
A=|1 2 3 -1 3].
-1 -2 0 1 3

(&) Find a basis for the row space/Af CO \)\(
(b) What is the rank ofA? tesa\

(c) Find a basis for the column S
(d) Find invertible r“ thcﬂquZhe canon-
|cz{io\r@\N lence.

&ub act the fir? %e second, add the first row to the third, then
multiply the new secortd row by-1 and subtract four times this row from the

third, to get the matrix
1 2 4 -1 5
=10 01 0 2.
O 00 O O

The first two rows clearly form a basis for the row space.
(b) The rank is 2, since there is a basis with two elements.

(c) The column rank is equal to the row rank and so is also equal to 2. By
inspection, the first and third columnsAfare linearly independent, so they form
a basis. The first and second columns are not linearly independent, so we cannot
use these! (Note that we have to go back to the orignhére; row operations
change the column space, so selecting two independent colunBhwadld not
be correct.)
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Remark A more elegant solution is the matrix

1 1 1 1
111 -1 1 -1
211 1 -1 -1
1 -1 -1 1

This matrix (without the facto%) is known as aHadamard matrix It is ann x n
matrix H with all entries+1 satisfyingH "H = nl. It is known that am x n
Hadamard matrix cannot exist unlesis 1, 2, or a multiple of 4; however, nobody
has succeeded in proving that a Hadamard matrix of anyrsidieisible by 4
exists.

The smallest order for which the existence of a Hadamard matrix is still in
doubt is (at the time of writingh = 668. The previous smallest,= 428, was
resolved only in 2004 by Hadi Kharaghani and Behruz Tayfeh-Reziae in Tehran,
by constructing an example.

As a further exercise, show that, Hf is a Hadamard matrix of size, thenl :

H H is a Hadamard matrix of sizen2 (The Hadamard ma @9
H —H \e ﬁ
constructed above is of this form.) Sa

o\
8. LetA= 1 ; rﬁ N ’LILA‘
Flnda \x atfi® and a %@n %suchthaPTAP—
whe @@Id matrix.

Flrst we take the quadratlc form correspondlng\t@nd reduce it to a sum of
squares. The form & 4 2xy-+ 2y?, which is(x+Yy)2 +y?. (Note: This is the sum
of two squares, in agreement with the fact thas positive definite.)

Now the matrix that transforms,y) to (x+vy,y) isQ = {0 ﬂ since
1 1 x+y]
01 y y

[x ¥1Q'Q m =X+ 2y+2y° =[x ylA m ,

Hence

sothatQ'Q=A.

Now, if we putP = Q1 = {1 _1} , we see thaP' AP=PT(Q'TQ)P =

0 1



