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6 CHAPTER 1. VECTOR SPACES

(a) The vectorsv1,v2, . . . ,vn are linearly independentif, whenever we have
scalarsc1,c2, . . . ,cn satisfying

c1v1 +c2v2 + · · ·+cnvn = 0,

then necessarilyc1 = c2 = · · ·= 0.

(b) The vectorsv1,v2, . . . ,vn arespanningif, for every vectorv∈V, we can find
scalarsc1,c2, . . . ,cn ∈K such that

v = c1v1 +c2v2 + · · ·+cnvn.

In this case, we writeV = 〈v1,v2, . . . ,vn〉.

(c) The vectorsv1,v2, . . . ,vn form abasisfor V if they are linearly independent
and spanning.

Remark Linear independence is a property of alist of vectors. A list containing
the zero vector is never linearly independent. Also, a list in which the same vector
occurs more than once is never linearly independent.

I will say “Let B= (v1, . . . ,vn) be a basis forV” to mean that the list of vectors
v1, . . . ,vn is a basis, and to refer to this list asB.

Definition 1.4 Let V be a vector space over the fieldK. We say thatV is finite-
dimensionalif we can find vectorsv1,v2, . . . ,vn ∈V which form a basis forV.

Remark In these notes we are only concerned with finite-dimensional vector
spaces. If you study Functional Analysis, Quantum Mechanics, or various other
subjects, you will meet vector spaces which are not finite dimensional.

Proposition 1.1 The following three conditions are equivalent for the vectors
v1, . . . ,vn of the vector space V overK:

(a) v1, . . . ,vn is a basis;

(b) v1, . . . ,vn is a maximal linearly independent set (that is, if we add any vector
to the list, then the result is no longer linearly independent);

(c) v1, . . . ,vn is a minimal spanning set (that is, if we remove any vector from
the list, then the result is no longer spanning).

The next theorem helps us to understand the properties of linear independence.
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1.2. BASES 7

Theorem 1.2 (The Exchange Lemma)Let V be a vector space overK. Suppose
that the vectors v1, . . . ,vn are linearly independent, and that the vectors w1, . . . ,wm

are linearly independent, where m> n. Then we can find a number i with1≤ i ≤m
such that the vectors v1, . . . ,vn,wi are linearly independent.

In order to prove this, we need a lemma about systems of equations.

Lemma 1.3 Given a system (∗)

a11x1 +a12x2 + · · ·+a1mxm = 0,

a21x1 +a22x2 + · · ·+a2mxm = 0,

· · ·
an1x1 +an2x2 + · · ·+anmxm = 0

of homogeneous linear equations, where the number n of equations is strictly less
than the number m of variables, there exists a non-zero solution(x1, . . . ,xm) (that
is, x1, . . . ,xm are not all zero).

Proof This is proved by induction on the number of variables. If the coefficients
a11,a21, . . . ,an1 of x1 are all zero, then puttingx1 = 1 and the other variables zero
gives a solution. If one of these coefficients is non-zero, then we can use the
corresponding equation to expressx1 in terms of the other variables, obtaining
n− 1 equations inm− 1 variables. By hypothesis,n− 1 < m− 1. So by the
induction hypothesis, these new equations have a non-zero solution. Computing
the value ofx1 gives a solution to the original equations.

Now we turn to the proof of the Exchange Lemma. Let us argue for a contra-
diction, by assuming that the result is false: that is, assume that none of the vectors
wi can be added to the list(v1, . . . ,vn) to produce a larger linearly independent list.
This means that, for allj, the list(v1, . . . ,vn,wi) is linearly dependent. So there
are coefficientsc1, . . . ,cn,d, not all zero, such that

c1v1 + · · ·+cnvn +dwi = 0.

We cannot haved = 0; for this would mean that we had a linear combination of
v1, . . . ,vn equal to zero, contrary to the hypothesis that these vectors are linearly
independent. So we can divide the equation through byd, and takewi to the other
side, to obtain (changing notation slightly)

wi = a1iv1 +a2iv2 + · · ·+anivn =
n

∑
j=1

a ji v j .
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1.3. ROW AND COLUMN VECTORS 9

Remark We allow the possibility that a vector space has dimension zero. Such
a vector space contains just one vector, the zero vector 0; a basis for this vector
space consists of the empty set.

Now letV be ann-dimensional vector space overK. This means that there is a
basisv1,v2, . . . ,vn for V. Since this list of vectors is spanning, every vectorv∈V
can be expressed as

v = c1v1 +c2v2 + · · ·+cnvn

for some scalarsc1,c2, . . . ,cn ∈ K. The scalarsc1, . . . ,cn are thecoordinatesof
v (with respect to the given basis), and thecoordinate representationof v is the
n-tuple

(c1,c2, . . . ,cn) ∈Kn.

Now the coordinate representation is unique. For suppose that we also had

v = c′1v1 +c′2v2 + · · ·+c′nvn

for scalarsc′1,c
′
2 . . . ,c′n. Subtracting these two expressions, we obtain

0 = (c1−c′1)v1 +(c2−c′2)v2 + · · ·+(cn−c′n)vn.

Now the vectorsv1,v2 . . . ,vn are linearly independent; so this equation implies
thatc1−c′1 = 0, c2−c′2 = 0, . . . ,cn−c′n = 0; that is,

c1 = c′1, c2 = c′2, . . . cn = c′n.

Now it is easy to check that, when we add two vectors inV, we add their
coordinate representations inKn (using coordinatewise addition); and when we
multiply a vectorv ∈ V by a scalarc, we multiply its coordinate representation
by c. In other words, addition and scalar multiplication inV translate to the same
operations on their coordinate representations. This is why we only need to con-
sider vector spaces of the formKn, as in Example 1.2.

Here is how the result would be stated in the language of abstract algebra:

Theorem 1.5 Any n-dimensional vector space over a fieldK is isomorphic to the
vector spaceKn.

1.3 Row and column vectors

The elements of the vector spaceKn are all then-tuples of scalars from the field
K. There are two different ways that we can represent ann-tuple: as a row, or as
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12 CHAPTER 1. VECTOR SPACES

In matrix form, this says c1
...

cn

= P

d1
...

dn

 ,

or in other words
[v]B = P[v]B′,

as required.

In this course, we will see four ways in which matrices arise in linear algebra.
Here is the first occurrence:matrices arise as transition matrices between bases
of a vector space.

The next corollary summarises how transition matrices behave. HereI denotes
the identity matrix, the matrix having 1s on the main diagonal and 0s everywhere
else. Given a matrixP, we denote byP−1 theinverseof P, the matrixQ satisfying
PQ = QP = I . Not every matrix has an inverse: we say thatP is invertible or
non-singularif it has an inverse.

Corollary 1.7 Let B,B′,B′′ be bases of the vector space V.

(a) PB,B = I.

(b) PB′,B = (PB,B′)−1.

(c) PB,B′′ = PB,B′PB′,B′′.

This follows from the preceding Proposition. For example, for (b) we have

[v]B = PB,B′ [v]B′ , [v]B′ = PB′,B [v]B,

so
[v]B = PB,B′PB′,B [v]B.

By the uniqueness of the coordinate representation, we havePB,B′PB′,B = I .

Corollary 1.8 The transition matrix between any two bases of a vector space is
invertible.

This follows immediately from (b) of the preceding Corollary.

Remark We see that, to express the coordinate representation w.r.t. the new
basis in terms of that w.r.t. the old one, we need the inverse of the transition matrix:

[v]B′ = P−1
B,B′[v]B.
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2.2. ROW AND COLUMN OPERATIONS 17

Theorem 2.1 Let A be an m× n matrix over the fieldK. Then it is possible to
change A into B by elementary row and column operations, where B is a matrix
of the same size satisfying Bii = 1 for 0≤ i ≤ r, for r ≤ min{m,n}, and all other
entries of B are zero.

If A can be reduced to two matrices B and B′ both of the above form, where
the numbers of non-zero elements are r and r′ respectively, by different sequences
of elementary operations, then r= r ′, and so B= B′.

Definition 2.4 The numberr in the above theorem is called therank of A; while
a matrix of the form described forB is said to be in thecanonical form for equiv-
alence. We can write the canonical form matrix in “block form” as

B =
[

Ir O
O O

]
,

whereIr is anr× r identity matrix andO denotes a zero matrix of the appropriate
size (that is,r×(n− r), (m− r)× r, and(m− r)×(n− r) respectively for the three
Os). Note that some or all of theseOs may be missing: for example, ifr = m, we
just have[ Im O].

Proof We outline the proof that the reduction is possible. To prove that we al-
ways get the same value ofr, we need a different argument.

The proof is by induction on the size of the matrixA: in other words, we
assume as inductive hypothesis that any smaller matrix can be reduced as in the
theorem. Let the matrixA be given. We proceed in steps as follows:

• If A = O (the all-zero matrix), then the conclusion of the theorem holds,
with r = 0; no reduction is required. So assume thatA 6= O.

• If A11 6= 0, then skip this step. IfA11 = 0, then there is a non-zero element
Ai j somewhere inA; by swapping the first andith rows, and the first andjth
columns, if necessary (Type 3 operations), we can bring this entry into the
(1,1) position.

• Now we can assume thatA11 6= 0. Multiplying the first row byA−1
11 , (row

operation Type 2), we obtain a matrix withA11 = 1.

• Now by row and column operations of Type 1, we can assume that all the
other elements in the first row and column are zero. For ifA1 j 6= 0, then
subtractingA1 j times the first column from thejth gives a matrix withA1 j =
0. Repeat this until all non-zero elements have been removed.
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2.2. ROW AND COLUMN OPERATIONS 19

corresponds to the elementary column operation of adding twice the first column
to the second, or to the elementary row operation of adding twice the second
row to the first. For the other types, the matrices for row operations and column
operations are identical.

Lemma 2.2 The effect of an elementary row operation on a matrix is the same as
that of multiplying on the left by the corresponding elementary matrix. Similarly,
the effect of an elementary column operation is the same as that of multiplying on
the right by the corresponding elementary matrix.

The proof of this lemma is somewhat tedious calculation.

Example 2.3 We continue our previous example. In order, here is the list of
elementary matrices corresponding to the operations we applied toA. (Here 2×2
matrices are row operations while 3×3 matrices are column operations).1 −2 0

0 1 0
0 0 1

 ,

1 0 −3
0 1 0
0 0 1

 ,

[
1 0
−4 1

]
,

[
1 0
0 −1/3

]
,

1 0 0
0 1 −2
0 0 1

 .

So the whole process can be written as a matrix equation:[
1 0
0 −1/3

][
1 0
−4 1

]
A

1 −2 0
0 1 0
0 0 1

1 0 −3
0 1 0
0 0 1

1 0 0
0 1 −2
0 0 1

= B,

or more simply [
1 0

4/3 −1/3

]
A

1 −2 1
0 1 −2
0 0 1

= B,

where, as before,

A =
[

1 2 3
4 5 6

]
, B =

[
1 0 0
0 1 0

]
.

An important observation about the elementary operations is that each of them
can have its effect undone by another elementary operation of the same kind,
and hence every elementary matrix is invertible, with its inverse being another
elementary matrix of the same kind. For example, the effect of adding twice the
first row to the second is undone by adding−2 times the first row to the second,
so that [

1 2
0 1

]−1

=
[

1 −2
0 1

]
.

Since the product of invertible matrices is invertible, we can state the above theo-
rem in a more concise form. First, one more definition:
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20 CHAPTER 2. MATRICES AND DETERMINANTS

Definition 2.5 Them×n matricesA andB are said to beequivalentif B = PAQ,
whereP andQ are invertible matrices of sizesm×m andn×n respectively.

Theorem 2.3 Given any m×n matrix A, there exist invertible matrices P and Q
of sizes m×m and n×n respectively, such that PAQ is in the canonical form for
equivalence.

Remark The relation “equivalence” defined above is an equivalence relation on
the set of allm×n matrices; that is, it is reflexive, symmetric and transitive.

When mathematicians talk about a “canonical form” for an equivalence re-
lation, they mean a set of objects which are representatives of the equivalence
classes: that is, every object is equivalent to a unique object in the canonical form.
We have shown this for the relation of equivalence defined earlier, except for the
uniqueness of the canonical form. This is our job for the next section.

2.3 Rank

We have the unfinished business of showing that the rank of a matrix is well de-
fined; that is, no matter how we do the row and column reduction, we end up with
the same canonical form. We do this by defining two further kinds of rank, and
proving that all three are the same.

Definition 2.6 Let A be anm×n matrix over a fieldK. We say that thecolumn
rank of A is the maximum number of linearly independent columns ofA, while
therow rankof A is the maximum number of linearly independent rows ofA. (We
regard columns or rows as vectors inKm andKn respectively.)

Now we need a sequence of four lemmas.

Lemma 2.4 (a) Elementary column operations don’t change the column rank
of a matrix.

(b) Elementary row operations don’t change the column rank of a matrix.

(c) Elementary column operations don’t change the row rank of a matrix.

(d) Elementary row operations don’t change the row rank of a matrix.

Proof (a) This is clear for Type 3 operations, which just rearrange the vectors.
For Types 1 and 2, we have to show that such an operation cannot take a linearly
independent set to a linearly dependent set; thevice versastatement holds because
the inverse of an elementary operation is another operation of the same kind.
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2.3. RANK 21

So suppose thatv1, . . . ,vn are linearly independent. Consider a Type 1 oper-
ation involving addingc times the jth column to theith; the new columns are
v′1, . . . ,v

′
n, wherev′k = vk for k 6= i, while v′i = vi +cvj . Suppose that the new vec-

tors are linearly dependent. Then there are scalarsa1, . . . ,an, not all zero, such
that

0 = a1v′1 + · · ·+anv′n
= a1v1 + · · ·+ai(vi +cvj)+ · · ·+a jv j + · · ·+anvn

= a1v1 + · · ·+aivi + · · ·+(a j +cai)v j + · · ·+anvn.

Sincev1, . . . ,vn are linearly independent, we conclude that

a1 = 0, . . . ,ai = 0, . . . ,a j +cai = 0, . . . ,an = 0,

from which we see that all theak are zero, contrary to assumption. So the new
columns are linearly independent.

The argument for Type 2 operations is similar but easier.

(b) It is easily checked that, if an elementary row operation is applied, then the
new vectors satisfy exactly the same linear relations as the old ones (that is, the
same linear combinations are zero). So the linearly independent sets of vectors
don’t change at all.

(c) Same as (b), but applied to rows.

(d) Same as (a), but applied to rows.

Theorem 2.5 For any matrix A, the row rank, the column rank, and the rank are
all equal. In particular, the rank is independent of the row and column operations
used to compute it.

Proof Suppose that we reduceA to canonical formB by elementary operations,
whereB has rankr. These elementary operations don’t change the row or column
rank, by our lemma; so the row ranks ofA andB are equal, and their column ranks
are equal. But it is trivial to see that, if

B =
[

Ir O
O O

]
,

then the row and column ranks ofB are both equal tor. So the theorem is proved.

We can get an extra piece of information from our deliberations. LetA be an
invertible n×n matrix. Then the canonical form ofA is just I : its rank is equal
to n. This means that there are matricesP andQ, each a product of elementary
matrices, such that

PAQ= In.
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24 CHAPTER 2. MATRICES AND DETERMINANTS

In symbols,

(ci ,c j) 7→ (ci ,c j +ci) 7→ (−ci ,c j +ci) 7→ (c j ,c j +ci) 7→ (c j ,ci).

The first, third and fourth steps don’t change the value ofD, while the second
multiplies it by−1.

Now we take the matrixA and apply elementary column operations to it, keep-
ing track of the factors by whichD gets multiplied according to rules (a)–(c). The
overall effect is to multiplyD(A) by a certain non-zero scalarc, depending on the
operations.

• If A is invertible, then we can reduceA to the identity, so thatcD(A) =
D(I) = 1, whenceD(A) = c−1.

• If A is not invertible, then its column rank is less thann. So the columns ofA
are linearly dependent, and one column can be written as a linear combina-
tion of the others. Applying axiom (D1), we see thatD(A) is a linear com-
bination of valuesD(A′), whereA′ are matrices with two equal columns; so
D(A′) = 0 for all suchA′, whenceD(A) = 0.

This proves that the determinant function, if it exists, is unique. We show its
existence in the next section, by giving a couple of formulae for it.

Given the uniqueness of the determinant function, we now denote it by det(A)
instead ofD(A). The proof of the theorem shows an important corollary:

Corollary 2.9 A square matrix is invertible if and only ifdet(A) 6= 0.

Proof See the case division at the end of the proof of the theorem.

One of the most important properties of the determinant is the following.

Theorem 2.10 If A and B are n×n matrices overK, thendet(AB)= det(A)det(B).

Proof Suppose first thatB is not invertible. Then det(B) = 0. Also, AB is not
invertible. (For, suppose that(AB)−1 = X, so thatXAB= I . ThenXA is the inverse
of B.) So det(AB) = 0, and the theorem is true.

In the other case,B is invertible, so we can apply a sequence of elementary
column operations toB to get to the identity. The effect of these operations is
to multiply the determinant by a non-zero factorc (depending on the operations),
so thatcdet(B) = I , or c = (det(B))−1. Now these operations are represented by
elementary matrices; so we see thatBQ= I , whereQ is a product of elementary
matrices.
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3.2. REPRESENTATION BY MATRICES 35

Spanning: Take any vector in Im(α), sayw. Thenw = α(v) for somev ∈ V.
Write v in terms of the basis forV:

v = a1u1 + · · ·+aquq +c1v1 + · · ·+csvs

for somea1, . . . ,aq,c1, . . . ,cs. Applying α, we get

w = α(v)
= a1α(u1)+ · · ·+aqα(uq)+c1α(v1)+ · · ·+csα(vs)
= c1w1 + · · ·+csws,

sinceα(ui) = 0 (asui ∈ Ker(α)) andα(vi) = wi . So the vectorsw1, . . . ,ws

span Im(α).

Thus, ρ(α) = dim(Im(α)) = s. Sinceν(α) = q and q+ s = dim(V), the
theorem is proved.

3.2 Representation by matrices

We come now to the second role of matrices in linear algebra:they represent
linear maps between vector spaces.

Let α : V →W be a linear map, where dim(V) = m and dim(W) = n. As we
saw in the first section, we can takeV andW in their coordinate representation:
V = Km andW = Kn (the elements of these vector spaces being represented as
column vectors). Lete1, . . . ,em be the standard basis forV (so thatei is the vector
with ith coordinate 1 and all other coordinates zero), andf1, . . . , fn the standard
basis forV. Then fori = 1, . . . ,m, the vectorα(ei) belongs toW, so we can write
it as a linear combination off1, . . . , fn.

Definition 3.4 The matrix representing the linear mapα : V →W relative to the
basesB = (e1, . . . ,em) for V andC = ( f1, . . . , fn) for W is then×mmatrix whose
(i, j) entry isai j , where

α(ei) =
n

∑
j=1

a ji f j

for j = 1, . . . ,n.

In practice this means the following. Takeα(ei) and write it as a column vector
[a1i a2i · · · ani ]

>. This vector is theith column of the matrix representingα.
So, for example, ifm= 3, n = 2, and

α(e1) = f1 + f2, α(e2) = 2 f1 +5 f2, α(e3) = 3 f1− f2,
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3.4. CANONICAL FORM REVISITED 39

Proposition 3.7 Two matrices represent the same linear map with respect to dif-
ferent bases if and only if they are equivalent.

This holds because

• transition matrices are always invertible (the inverse ofPB,B′ is the matrix
PB′,B for the transition in the other direction); and

• any invertible matrix can be regarded as a transition matrix: for, if then×n
matrix P is invertible, then its rank isn, so its columns are linearly inde-
pendent, and form a basisB′ for Kn; and thenP = PB,B′, whereB is the
“standard basis”.

3.4 Canonical form revisited

Now we can give a simpler proof of Theorem 2.3 about canonical form for equiv-
alence. First, we make the following observation.

Theorem 3.8 Let α : V →W be a linear map of rank r= ρ(α). Then there are
bases for V and W such that the matrix representingα is, in block form,[

Ir O
O O

]
.

Proof As in the proof of Theorem 3.2, choose a basisu1, . . . ,us for Ker(α), and
extend to a basisu1, . . . ,us,v1, . . . ,vr for V. Thenα(v1), . . . ,α(vr) is a basis for
Im(α), and so can be extended to a basisα(v1), . . . ,α(vr),x1, . . . ,xt for W. Now
we will use the bases

v1, . . . ,vr ,vr+1 = u1, . . . ,vr+s = ws for V,

w1 = α(v1), . . . ,wr = α(vr),wr+1 = x1, . . . ,wr+s = xs for W.

We have

α(vi) =
{

wi if 1 ≤ i ≤ r,
0 otherwise;

so the matrix ofα relative to these bases is[
Ir O
O O

]
as claimed.
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44 CHAPTER 4. LINEAR MAPS ON A VECTOR SPACE

Proposition 4.3 Letα be a linear map on V which is represented by the matrix A
relative to a basis B, and by the matrix A′ relative to a basis B′. Let P= PB,B′ be
the transition matrix between the two bases. Then

A′ = P−1AP.

Proof This is just Proposition 4.6, sinceP andQ are the same here.

Definition 4.2 Two n×n matricesA andB are said to besimilar if B = P−1AP
for some invertible matrixP.

Thus similarity is an equivalence relation, and

two matrices are similar if and only if they represent the same linear
map with respect to different bases.

There is no simple canonical form for similarity like the one for equivalence
that we met earlier. For the rest of this section we look at a special class of ma-
trices or linear maps, the “diagonalisable” ones, where we do have a nice simple
representative of the similarity class. In the final section we give without proof a
general result for the complex numbers.

4.3 Eigenvalues and eigenvectors

Definition 4.3 Let α be a linear map onV. A vector v ∈ V is said to be an
eigenvectorof α, with eigenvalueλ ∈ K, if v 6= 0 andα(v) = λv. The set{v :
α(v) = λv} consisting of the zero vector and the eigenvectors with eigenvalueλ

is called theλ -eigenspaceof α.

Note that we require thatv 6= 0; otherwise the zero vector would be an eigen-
vector for any value ofλ . With this requirement, each eigenvector has a unique
eigenvalue: for ifα(v) = λv = µv, then(λ − µ)v = 0, and so (sincev 6= 0) we
haveλ = µ.

The nameeigenvalueis a mixture of German and English; it means “charac-
teristic value” or “proper value” (here “proper” is used in the sense of “property”).
Another term used in older books is “latent root”. Here “latent” means “hidden”:
the idea is that the eigenvalue is somehow hidden in a matrix representingα, and
we have to extract it by some procedure. We’ll see how to do this soon.
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68 CHAPTER 6. INNER PRODUCT SPACES

for any vectorv∈V; and, ifv,w 6= 0, then we define the angle between them to be
θ , where

cosθ =
v·w
|v|.|w|

.

For this definition to make sense, we need to know that

−|v|.|w| ≤ v·w≤ |V|.|w|

for any vectorsv,w (since cosθ lies between−1 and 1). This is the content of the
Cauchy–Schwarz inequality:

Theorem 6.1 If v,w are vectors in an inner product space then

(v·w)2 ≤ (v·v)(w ·w).

Proof By definition, we have(v+xw) · (v+xw)≥ 0 for any real numberx. Ex-
panding, we obtain

x2(w ·w)+2x(v·w)+(v·v)≥ 0.

This is a quadratic function inx. Since it is non-negative for all realx, either it has
no real roots, or it has two equal real roots; thus its discriminant is non-positive,
that is,

(v·w)2− (v·v)(w ·w)≤ 0,

as required.

There is essentially only one kind of inner product on a real vector space.

Definition 6.2 A basis(v1, . . . ,vn) for an inner product space is calledorthonor-
mal if vi ·v j = δi j (the Kronecker delta) for 1≤ i, j ≤ n.

Remark: If vectorsv1, . . . ,vn satisfyvi · v j = δi j , then they are necessarily lin-
early independent. For suppose thatc1v1+ · · ·+cnvn = 0. Taking the inner product
of this equation withvi , we find thatci = 0, for all i.

Theorem 6.2 Let · be an inner product on a real vector space V. Then there is an
orthonormal basis(v1, . . . ,vn) for V . If we represent vectors in coordinates with
respect to this basis, say v= [x1 x2 . . . xn ]> and w= [y1 y2 . . . yn ]>,
then

v·w = x1y1 +x2y2 + · · ·+xnyn.
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6.1. INNER PRODUCTS AND ORTHONORMAL BASES 69

Proof This follows from our reduction of quadratic forms in the last chapter.
Since the inner product is bilinear, the functionq(v) = v · v = |v|2 is a quadratic
form, and so it can be reduced to the form

q = x2
1 + · · ·+x2

s−x2
s+1−·· ·−x2

s+t .

Now we must haves= n andt = 0. For, if t > 0, then thes+1st basis vectorvs+1

satisfiesvs+1 ·vs+1 = −1; while if s+ t < n, then thenth basis vectorvn satisfies
vn · vn = 0. Either of these would contradict the positive definiteness ofV. Now
we have

q(x1, . . . ,xn) = x2
1 + · · ·+x2

n,

and by polarisation we find that

b((x1, . . . ,xn),(y1, . . . ,yn)) = x1y1 + · · ·+xnyn,

as required.
However, it is possible to give a more direct proof of the theorem; this is

important because it involves a constructive method for finding an orthonormal
basis, known as theGram–Schmidt process.

Let w1, . . . ,wn be any basis forV. The Gram–Schmidt process works as fol-
lows.

• Sincew1 6= 0, we havew1 ·w1 > 0, that is,|w1|> 0. Putv1 = w1/|w1|; then
|v1|= 1, that is,v1 ·v1 = 1.

• For i = 2, . . . ,n, let w′
i = wi − (v1 ·wi)v1. Then

v1 ·w′
i = v1 ·wi − (v1 ·wi)(v1 ·v1) = 0

for i = 2, . . . ,n.

• Now apply the Gram–Schmidt process recursively to(w′
2, . . . ,w

′
n).

Since we replace these vectors by linear combinations of themselves, their inner
products withv1 remain zero throughout the process. So if we end up with vectors
v2, . . . ,vn, thenv1 ·vi = 0 for i = 2, . . . ,n. By induction, we can assume thatvi ·v j =
δi j for i, j = 2, . . . ,n; by what we have said, this holds ifi or j is 1 as well.

Definition 6.3 The inner product onRn for which the standard basis is orthonor-
mal (that is, the one given in the theorem) is called thestandard inner producton
Rn.
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74 CHAPTER 7. SYMMETRIC AND HERMITIAN MATRICES

U , and so lie inU⊥; and they are clearly linearly independent. Now suppose that
w∈U⊥ andw= ∑civi , where(v1, . . . ,vn) is the orthonormal basis we constructed.
Thenci = w ·vi = 0 for i = 1, . . . , r; sow is a linear combination of the lastn− r
basis vectors, which thus form a basis ofU⊥. Hence dim(U⊥) = n−r, as required.

Now the last statement of the proposition follows from the proof, since we
have a basis forV which is a disjoint union of bases forU andU⊥.

Recall the connection between direct sum decompositions and projections. If
we have projectionsP1, . . . ,Pr whose sum is the identity and which satisfyPiPj =
O for i 6= j, then the spaceV is the direct sum of their images. This can be refined
in an inner product space as follows.

Definition 7.2 Let V be an inner product space. A linear mapπ : V → V is an
orthogonal projectionif

(a) π is a projection, that is,π2 = π;

(b) π is self-adjoint, that is,π∗ = π (whereπ∗(v) ·w= v·π(w) for all v,w∈V).

Proposition 7.2 If π is an orthogonal projection, thenKer(π) = Im(π)⊥.

Proof We know thatV = Ker(π)⊕ Im(π); we only have to show that these two
subspaces are orthogonal. So takev∈ Ker(π), so thatπ(v) = 0, andw∈ Im(π),
so thatw = π(u) for someu∈V. Then

v·w = v·π(u) = π
∗(v) ·u = π(v) ·u = 0,

as required.

Proposition 7.3 Let π1, . . . ,πr be orthogonal projections on an inner product
space V satisfyingπ1 + · · ·+ πr = I and πiπ j = O for i 6= j. Let Ui = Im(πi)
for i = 1, . . . , r. Then

V = U1⊕U2⊕·· ·⊕Ur ,

and if ui ∈Ui and uj ∈U j , then ui and uj are orthogonal.

Proof The fact thatV is the direct sum of the images of theπi follows from
Proposition 5.2. We only have to prove the last part. So takeui andu j as in the
Proposition, sayui = πi(v) andu j = π j(w). Then

ui ·u j = πi(v) ·π j(w) = π
∗
i (v) ·π j(w) = v·πi(π j(w)) = 0,

where the second equality holds sinceπi is self-adjoint and the third is the defini-
tion of the adjoint.

A direct sum decomposition satisfying the conditions of the theorem is called
anorthogonal decompositionof V.

Conversely, if we are given an orthogonal decomposition ofV, then we can
find orthogonal projections satisfying the hypotheses of the theorem.
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Proof This is obvious since ifb is alternating thena ji = b(v j ,vi) =−b(vi ,v j) =
−ai j andaii = b(vi ,vi) = 0.

So we can write our theorem in matrix form as follows:

Theorem 9.4 Let A be an alternating matrix (or a skew-symmetric matrix over a
field whose characteristic is not equal to2). Then there is an invertible matrix P

such that P>AP is the matrix with s blocks

[
0 1
−1 0

]
on the diagonal and all other

entries zero. Moreover the number s is half the rank of A, and so is independent
of the choice of P.

Proof We know that the effect of a change of basis with transition matrixP is to
replace the matrixA representing a bilinear form byP>AP. Also, the matrix in the
statement of the theorem is just the matrix representingb relative to the special
basis that we found in the preceding theorem.

This has a corollary which is a bit surprising at first sight:

Corollary 9.5 (a) The rank of a skew-symmetric matrix (over a field of char-
acteristic not equal to2) is even.

(b) The determinant of a skew-symmetric matrix (over a field of characteristic
not equal to2) is a square, and is zero if the size of the matrix is odd.

Proof (a) The canonical form in the theorem clearly has rank 2s.
(b) If the skew-symmetric matrixA is singular then its determinant is zero,

which is a square. So suppose that it is invertible. Then its canonical form has

s= n/2 blocks

[
0 1
−1 0

]
on the diagonal. Each of these blocks has determinant 1,

and hence so does the whole matrix. So det(P>AP) = det(P)2det(A) = 1, whence
det(A) = 1/(det(P)2), which is a square.

If the sizen of A is odd, then the rank cannot ben (by (a)), and so det(A) = 0.

Remark There is a function defined on skew-symmetric matrices called the
Pfaffian, which like the determinant is a polynomial in the matrix entries, and
has the property that det(A) is the square of the Pfaffian ofA: that is, det(A) =
(Pf(A))2.

For example,

Pf

[
0 a
−a 0

]
= a, Pf


0 a b c
−a 0 d e
−b −d 0 f
−c −e − f 0

= a f −be+cd.

(Check that the determinant of the second matrix is(a f −be+cd)2.)
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Appendix F

Worked examples

1. Let

A =

 1 2 4 −1 5
1 2 3 −1 3
−1 −2 0 1 3

 .

(a) Find a basis for the row space ofA.

(b) What is the rank ofA?

(c) Find a basis for the column space ofA.

(d) Find invertible matricesP andQ such thatPAQ is in the canon-
ical form for equivalence.

(a) Subtract the first row from the second, add the first row to the third, then
multiply the new second row by−1 and subtract four times this row from the
third, to get the matrix

B =

1 2 4 −1 5
0 0 1 0 2
0 0 0 0 0

 .

The first two rows clearly form a basis for the row space.

(b) The rank is 2, since there is a basis with two elements.

(c) The column rank is equal to the row rank and so is also equal to 2. By
inspection, the first and third columns ofA are linearly independent, so they form
a basis. The first and second columns are not linearly independent, so we cannot
use these! (Note that we have to go back to the originalA here; row operations
change the column space, so selecting two independent columns ofB would not
be correct.)
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Remark A more elegant solution is the matrix

1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

This matrix (without the factor12) is known as aHadamard matrix. It is ann×n
matrix H with all entries±1 satisfyingH>H = nI. It is known that ann× n
Hadamard matrix cannot exist unlessn is 1, 2, or a multiple of 4; however, nobody
has succeeded in proving that a Hadamard matrix of any sizen divisible by 4
exists.

The smallest order for which the existence of a Hadamard matrix is still in
doubt is (at the time of writing)n = 668. The previous smallest,n = 428, was
resolved only in 2004 by Hadi Kharaghani and Behruz Tayfeh-Reziae in Tehran,
by constructing an example.

As a further exercise, show that, ifH is a Hadamard matrix of sizen, then[
H H
H −H

]
is a Hadamard matrix of size 2n. (The Hadamard matrix of size 4

constructed above is of this form.)

8. LetA =
[

1 1
1 2

]
andB =

[
1 1
1 0

]
.

Find an invertible matrixP and a diagonal matrixD such thatP>AP=
I andP>BP= D, whereI is the identity matrix.

First we take the quadratic form corresponding toA, and reduce it to a sum of
squares. The form isx2+2xy+2y2, which is(x+y)2+y2. (Note:This is the sum
of two squares, in agreement with the fact thatA is positive definite.)

Now the matrix that transforms(x,y) to (x+y,y) is Q =
[

1 1
0 1

]
, since

[
1 1
0 1

][
x
y

]
=
[

x+y
y

]
.

Hence

[x y]Q>Q

[
x
y

]
= x2 +2xy+2y2 = [x y]A

[
x
y

]
,

so thatQ>Q = A.

Now, if we putP = Q−1 =
[

1 −1
0 1

]
, we see thatP>AP= P>(Q>Q)P = I .
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