MEASUREMENT OF MASS & TIME

MASS

•Unified atomic mass unit(amu) is used to measure mass of atoms & molecules

•1amu =(1/12)th mass of one C¹² atom

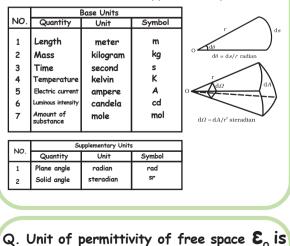
- •1amu = 1.66×10⁻²⁷ kg
- •Electron mass- 10-30 kg
- Earth mass : 10²⁵ ka •Observable Universe 1055 kg

TIME

·SI unit is second (based on caesium clock with an uncertainity less than 1 part in 10⁻¹³ ie, 3µs loss every year)

•Timespan of unstable particle: 10⁻²⁴ s

• Age of universe: 1017 s


MEASUREMENT OF LENGTH

·Large distance is measured by parallax method • Parallax angle = $\frac{BASIS}{DISTANCE} = \frac{b}{x}$ •1°=1.745 x 10⁻² rad •1'=2.91×10-4 rad. •1"=4.85×10⁻⁶ rad ·For very small sizes, optical microscope, tunneling microscope, electron microscope were used. · 1parsec= 3.08 × 10¹⁵ m • Size of photon Galactic from •Radius of Earth: 10⁷m

·Distance to Boundary Of Observable Universe : 10²⁶ m

SI SYSTEM

7 Base units and 2 supplementary units

- (a) coloumb/newton-metre
- (b) newton-metre² /coloumb²
- (c) coloumb²/newton-metre²
- (d) coloumb²/(newton-metre)²

SIGNIFICANT FIGURES

The digits in a measured quantity which are reliable and confidence in our measurement + the digit which is uncertain.

RULES FOR SIGNIFICANT FIGURES

1. All non-zero digits are significant. For example, 42.3 has three significant figures; 243.4 has four significant figures; and 24.123 has five significant figures.

2. A zero becomes significant figure if it appears between two non-zero digits. For example, 5.03 has three significant figures; 5.604 has four significant figures; and 4.004 has four significant figures

3. Leading zeros or the zeros placed to the left of the number are never significant. For example, 0.543 has three significant figures; 0.045 has two significant figures; and 0.006 has one significant figure

4. Trailing zeros or the zeros placed to the right of the number are significant. For example, 4.330 has four significant figures; 433.00 has five significant figures; and 343.000 has six significant figures.

5. In exponential notation, the numerical portion gives the number of significant figures. For example,1.32 \times 10 $^{\circ2}$ has three significant figures and 1.32 × 10⁴ has three significant figures.

RULES FOR ROUNDING OF A MEASUREMENT

1. If the digit to be dropped is less than 5, then the preceding digit is left unchanged. For example, x = 7.82 is rounded off to 7.8 and x = 3.94 is rounded off to 3.9.

2. If the digit to be dropped is more than 5, then the preceding digit is raised by one. For example, x = 6.87 is rounded of 6.9 and x = 12.78 is rounded off to 12.8.

3. If the digit to be dropped is 5 to llowed by digits other than zero, then the preceding dign is readily one. For example, x = 16.351 is rounded off to 1.4 maxes 0.758 is rounded off to 6.8. 1. If handight to be dropped is 5 or 5 followed by zeros, then the receding digit if its even, is left unchanged. For example, x = 3.250 becomes 3 2 on rounding off and x = 12.650 becomes 12.6 ontrounding fi oproundig

5. If the digit to be dropped is 5 or 5 followed by zeros, then the preceding digit, if it is odd, is raised by one. For example, x = 3.750 is rounded off to 3.8, again x = 16.150 is rounded off to 16.2

RULES FOR ROUNDING OF A MEASUREMENT

ADDITION & SUBTRACTION

In addition or subtraction, the final result should be reported to the same number of decimal Places as that of the original number with minimum number of decimal places

3.1421 0.241

- \leftarrow (has two decimal places) +0.09
- 3.4731 (Answer should be reported to two decimal places after rounding off)

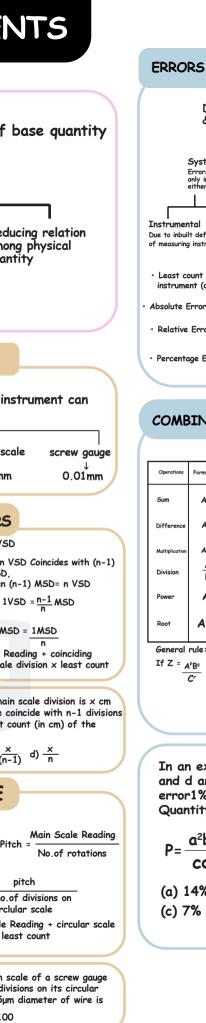
Answer = 3.47

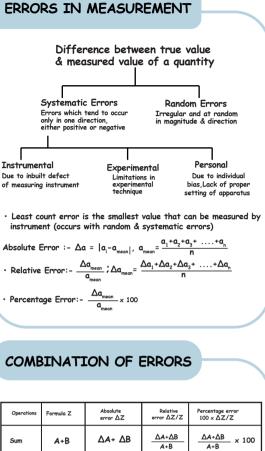
MULTIPLICATION & DIVISION

When numbers are multiplied or divided, the number of significant figures in the answer equals the smallest number of significant figures in any of the original numbers

51.028 $\times 1.31 \quad \leftarrow$ (Three significant figures) 66.84668 ← (Answer should have three significant figures after rounding off)

Answer = 66.8


If L=2.331cm, B= 2.1cm,then L+B = ?			
(a) 4.431 cm	(b) 4.43 cm		
(c) 4.4 cm	(d) 4 cm		


UNITS & MEASUREMENTS

Dimensional Analysis

Dimensions of a physical quantity are power to which units of base quantity are raised. Eq: [M]^a [L]^b [T]^c [A]^d [K]^e

5	APPLICATIONS			
checking the correctness of various formulae Eg: If Z=A+B,[Z]=[A]=[B]	conversion of one system of unit into another $n_1u_1=n_2u_2$ Eg: $n_1[M_1^A L_1^B T_1^C] = n_2[M_2^A L_2^B T_2^C]$ $n_1 = n_2 \left[\frac{M_2}{M_1}\right]^A \left[\frac{L_2}{L_1}\right]^B \left[\frac{T_2}{T_1}\right]^C$			
DIMENSIONAL FORM	ULA	INSTRUMENT	rs	
1) Pressure=stress=Young's modu 2) Work=Energy=Torque=M L ² T ⁻³ 3) Power P=M L ² T ⁻³ 4) Gravitational constant G=M ⁻¹ L 5) Force constant=Spring constant 6) Coefficient of viscosity=M L ⁻¹ 7) Latent heat L=L ² T ⁻² 8) Electric potential= $\frac{P}{I}$ = M L ² T 9) Resistance= $\sqrt{\frac{\mu_0}{\epsilon_0}}$ =M L ² T ⁻³ A ⁻² 10) Capacitance=M ⁻¹ L ⁻² T ⁻⁴ A ² 11) Permittivity ϵ_0 =M ⁻¹ L ⁻³ T ⁴ A ² 12) Angular momentum = planck's =M ¹ L ² T ⁻¹	-2 ³ T ⁻² ht=M T ⁻² T ⁻¹ ⁷⁻³ A ⁻¹	Imm VERNIER CAL Least Count = 1 MS Least Count = 1 MSD Least Count = 1 MSD Total Reading = Main	ernier scale 0.1mm IPERS D - 1VSD If n VSD MSD, then (n-1) $\therefore 1VSD$ $p - \frac{n-1}{n}MSD = \frac{1}{n}$	
$T \propto \sqrt{\frac{1}{g}} \propto \sqrt{\frac{m}{k}}$ Time period $\frac{L}{R} = RC = \sqrt{LC}$	$\alpha \sqrt{\frac{R}{g}}$	In a vernier calipers, & n division of vernie of the main scale. th calipers is. a) $\left(\frac{n-1}{n}\right) \times$ b) $\left(\frac{nx}{(n-1)}\right)$	er scale coinc he least cour	
DIMENSIONLESS QUANTITIES		SCREW GAN	JGE	
 Strain Refractive index Relative density Plane angle Solid angle 		Total Reading = Line	Pitch • • • • • • • • • • • • • • • • • • •	
In SI Units, the dimensions of a)A ⁻¹ T M L ³ b)A T ² M ⁻¹ L c)A T ⁻³ M L ^{3/2} d)A ² T ³ M ⁻¹	,-1 is:	The least count of th is 1mm the minimum scale required to me a) 200 b) 50 c) 40	no.of divisio asure 5µm d	

Operations	Formula Z	Absolute error ∆Z	Relative error ∆Z/Z	Percentage error 100 × ∆Z/Z	
Sum	A+B	Δα+ ΔΒ	<u>ΔΑ+ΔΒ</u> Α+Β	$\frac{\Delta A + \Delta B}{A + B} \times 100$	
Difference	A-B	ΔΑ+ ΔΒ	A+ΔB 	$\frac{\Delta A + \Delta B}{A - B} \times 100$	
Multiplication	A×B	α∆β+ β∆α	$\frac{\Delta A}{A} + \frac{\Delta B}{B}$	$\left(\frac{\Delta A}{A} + \frac{\Delta B}{B}\right) \times 100$	
Division	<u>A</u> B	$\frac{B\Delta A + A\Delta B}{B^2}$	$\frac{\Delta A}{A} + \frac{\Delta B}{B}$	$\left(\frac{\Delta A}{A} + \frac{\Delta B}{B}\right) \times 100$	
Power	An	n A ^{n−1} ∆A	n <u>∆A</u>	$n\frac{\Delta A}{A} \times 100$	
Root	A ^{1/n}	$\frac{1}{n} A^{1/n-1} \Delta A$	$\frac{1}{n}\frac{\Delta A}{A}$	$\frac{1}{n}\frac{\Delta A}{A} \times 100$	
General mule:					

7

,Then the maximum fractional relative error in Z will be

$$\frac{Z}{Z} = p \frac{\Delta A}{A} + q \frac{\Delta B}{B} + r \frac{\Delta C}{C}$$

In an expirement four quantities a,b,c and d are measured with percentage error1%, 2%, 3% and 4% respectievely. Quantity P is calculated as follows:

$$P = \frac{a^2b^2}{cd}$$
 then percentage error in P is

(a) 14% (b) 10% (c) 7% (d) 4%

