Mathematically $V \propto n$ at constant T and p $\Rightarrow V = k.n$

For the same value of number of moles at constant temperature and pressure the proportionality constant 'k' will be a universal constant. At 0°C and 1 atm the value of k for 1 mole of gas is 22.4 litres.

Ideal Gas Law Equation of State

Combination of Boyle's law, Charle's law and Avogadro's law gives the ideal gas equation.

Boyle's law
$$V \propto \frac{1}{p}$$
 if T is constant.
Charle's law $\rightarrow V \propto T$ if P is constant.
and Avogadro's law $\rightarrow V \propto n$ if P and T are constant.
Thus, $V \propto \frac{nT}{p}$ i.e. $PV \propto nT \rightarrow \sigma r$ $PV = nRT$
Where R is molar gas constant
or $PV = RT$ for 1 mole of gas
Numerical values of R
(i) $R = \frac{PV}{T}$ (For one mole of gas)
Since one mole of a gas at use an 0 escure and 0 C (273 K) S upies a volume of 22.4 litre.
Then $PT = \frac{12}{273} = 0.0821$ litre are $GT^{-1}K^{+}$.
(ii) If pressure is taken in dyne/cm² and volume in ml.
 $R = \frac{76 \times 13.67 \times 981 \times 22400}{273} = 8.314 \times 10^{\circ} \text{ erg } K^{-1} \text{ mol}^{-1}$ (CGS units)
(iii) Since $IJ = 10^{\circ} \text{ erg}$
Thus $R = 8.314 \times 10^{\circ} \text{ erg}$.
 $R = \frac{8.314 \times 10^{\circ}}{4.184 \times 10^{\circ}} = 1.987 \approx 2^{\circ} \text{ calorie mol}^{-1} K^{-1}$
(v) If pressure is taken in bar so that volume is 22.7 dm³

$$k = \frac{1 \times 22.7}{1 \text{ mole} \times 273 \text{ k}} = 0.083 \text{ bar } \text{m}^3 \text{k}^{-1} \text{mol}^{-1}$$

Dalton's Law of Partial Pressure

At a given temperature the total pressure exerted by two or more non reacting gases occupying a definite volume is equal to the sum of the partial pressure of the component gases,

Mathematically,

$$\mathbf{P} = \mathbf{P}_{\mathbf{A}} + \mathbf{P}_{\mathbf{B}} + \mathbf{P}_{\mathbf{C}} + \mathbf{P}_{\mathbf{D}} + \dots$$

where P is the total pressure and P_A , P_B , P_C are the partial pressures of the gases A, B, C, respectively.