FONCTIONS EXPONENTIELLES DE BASE q

FONCTIONS EXPONENTIELLES $x \mapsto q^x$, avec q > 0

Soit q un nombre strictement positif. La suite (u_n) définie pour tout entier n par $u_n = q^n$ est une suite géométrique de raison q.

La fonction exponentielle de base q est le prolongement de cette suite géométrique.

DÉFINITION

Soit *q* un réel strictement positif

La fonction f définie pour tout réel x par $f(x) = q^x$ s'appelle la fonction exponentielle de base q. On admet que cette fonction est dérivable sur \mathbb{R} .

EXEMPLE

La fonction f définie pour tout réel x par $f(x) = 0.8^x$ est la fonction exponentielle de base 0.8. Une valeur approchée de l'image de −5,3 est obtenue à la calculatrice en tapant la séquence : 0.8 ∧ (- 5.3).

RELATION FONCTIONNELLE

La fonction exponentielle f de base q > 0 transforme les sommes en produits. Pour tous réels x et y:

$$f(x + y) = f(x) \times f(y)$$

Autrement dit, pour tous réels x et y: $q^{x+y} = q^x \times q^y$.

CONSÉQUENCES

Notesale.co.uk

 $\int_{0}^{x} donc \ q^{x} \neq 0 \text{ et } q^{-x} = \frac{1}{q^{x}}.$

De plus,
$$q^{x-y} = q^{x+(-y)} = q^x \times q^{-y} = \frac{q^x}{q^y}$$

Pour tout réel x, $q^x > 0$.

En effet, $q^{\frac{x}{2} + \frac{x}{2}} = q^{\frac{x}{2}} \times q^{\frac{x}{2}}$ soit $q^x = \left(q^{\frac{x}{2}}\right)^2$ avec $q^x \neq 0$.

Pour tout réel x, $q^{\frac{x}{2}} = \sqrt{q^x}$, et en particulier $q^{0.5} = \sqrt{q}$

En effet, $q^x = \left(q^{\frac{x}{2}}\right)^2$ et $q^x > 0$.

Pour tout réel x et tout entier relatif m, $(q^x)^m = q^{mx}$

Propriété usuelle des exposants entiers relatifs.

Pour tout entier naturel n > 0, $q^{\frac{1}{n}}$ est « la racine n-ième » de q

Pour tout entier naturel n > 0, comme $\frac{1}{n} \times n = 1$, alors $q^{\frac{1}{n}}$ est le nombre tel que $\left(q^{\frac{1}{n}}\right)^n = q$