
Arrays can also be initialized with values. For example, we could

initialize an array of integers with the values 1, 2, and 3 like this:

int a[3] = {1, 2, 3};

Representing Arrays in Memory

To represent an array in memory, we need to know how the elements of

the array are stored. In a one-dimensional array, the elements are

stored in a single row with multiple columns.

Each element of the array takes up space in memory, depending on its

data type. For example, an array of integers would take up 2-4 bytes of

memory per element.

Overall, understanding memory and arrays is crucial to programming, as

they are fundamental building blocks of many programs and

applications.

Arrays in Memory

In this video, we will discuss how data is stored in arrays in memory. All

the elements in an array are stored in consecutive/continuous locations

with the index starting at zero. The array can be statically initialized at

compile time or dynamically initialized at runtime.

One important point to note is that arrays are fixed-size. The elements

are stored in sequential/continuous locations with each element taking

up the same amount of memory.

Accessing Array Elements

The index of the array starts at zero (although it can start at one in

some cases). The size of the array is the number of elements it can hold

(n), with the index ranging from 0 to n-1. To access an element, use the

formula: base address + (i * size of data type).

The array follows the random access method, and accessing an element

has a time complexity of O(1).

Dynamic Allocation

Preview from Notesale.co.uk

Page 2 of 9

