
1. DUAL SPACE 4

1.G. Parametrization of L(Fn, V ) by lists of n vectors
There is a natural bijection V n → L(Fn, V ). It maps a list
u = (u1, . . . , un) ∈ V n to a linear map

Tu : Fn → V : (x1, . . . , xn) 7→
n∑
i=1

xiu1.

The inverse map maps T : Fn → V to the list (T (e1), . . .T (en)),
where e1, . . . , en ∈ Fn are the standard basis vectors.

1.H. Self-duality to the coordinate space: (Fn)
X

= Fn.

Indeed, according to 1.G, we have a bijection (Fn)
X

= L(Fn,F) → Fn.
A covector ϕ : Fn → F corresponds to the list (ϕ(e1), . . . , ϕ(en)) ∈ Fn,
which can be an arbitrary element of Fn. Verify that this bijection is
linear.

The values ϕ1 = ϕ(e1), . . . , ϕ1 = ϕ(en) of a functional ϕ on the
standard basis vectors e1, . . . , en can be considered as coordinates of ϕ
in (Fn)

X
.

The basis e1, . . . , en of (Fn)
X

corresponding to these coordinates is
defined by formulas ej(x1, . . . , xn) = xj.

Indeed, for any ϕ ∈ (Fn)
X

and x = (x1, . . . , xn) ∈ Fn we have

ϕ(x) = ϕ(
n∑
i=1

xiei)

=
n∑
i=1

xiϕ(ei)

=
n∑
i=1

ei(x1, . . . , xn)ϕ(ei)

=
n∑
i=1

ϕ(ei)e
i(x) =

n∑
i=1

ϕie
i.

Thus ϕ =
∑n

i=1 ϕie
i.

In particular,

ej(ei) =

{
1, if i = j

0, if i 6= j
.

Here it is convenient to use the Kronecker delta symbol, which is defined
by formula

δji =

{
1, if i = j

0, if i 6= j

With the Kronecker delta the relation between ei and ej looks as follows:
ej(ei) = δji .
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index appears twice once as lower and once as upper index). For example,
formula xie

i should be understood as
∑

i xie
i. The range of summation

is determined from the context.

We will use this skipping of a summation sign cautiously, repeating
the same formulas with the summation sign in order to reduce the risk
of confusion, until the reader will get comfortable with the shorthand
notation and appreciate its flexibility and convenience.

Recall that entries of the matrix of a linear map are involved in the
following formulas: the image of the basis vector ej under the linear map
with matrix (aij) is

∑m
i=1 aijei and the ith coordinate of the image of

vector (x1, . . . , xn) is
∑n

j=1 aijxj. The first formula suggests to raise the

first index of the entry aij. Then it would take the shape
∑m

i=1 a
i
jei or even

aijei (by skipping the summation sign). In the second formula we have to
raise, first, the index at xj, as it was stated above, and then raising the
first index at the matrix entry would make it perfect:

∑n
j=1 a

i
jx
j. Again,

we can skip the summation sign and shorthand
∑n

j=1 a
i
jx
j till aijx

j.

Thus, in matrices that we met so far, the index numerating lines
should be raised to the upper position, while the index numerating rows
should be left in the lower position. Then skipping sigmas makes nota-
tion very similar to matrix notation: we write aijx

j instead of AX, and,
say, matrix expression XAY for 〈x|Ty〉 that we discussed in 1.10 turns
to xia

i
jy
j where double summation (both over i and j) is understood.

However this similarity falls short when the number of indices increases.
It could be preserved if one could use high dimensional matrices.

2. Tensors

2.1. Polylinear maps

Let V1, . . .Vn, W be vector spaces over a field F. A map

F : V1 × · · · × Vn → W : (v1, . . . , vn) 7→ F (v1, . . . , vn)

is said to be polylinear or multilinear, if it is linear as a function of each
of its arguments, when the other arguments are fixed. In other words,

F (v1, . . . , vi−1, x+ y, vi+1, . . . , vn) =

F (v1, . . . , vi−1, x, vi+1, . . . , vn) + F (v1, . . . , vi−1, y, vi+1, . . . , vn),

F (v1, . . . , vi−1, avi, vi+1, . . . , vn) = aF (v1, . . . , vi−1, vi, vi+1, . . . , vn)

for i = 1, . . . , n, a ∈ F. If W = F, a polylinear map is called also a
polylinear function, or polylinear functional, or polylinear form.

11
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2. TENSORS 12

The set of all polylinear maps V1 × · · · × Vn → W is denoted by
L(V1, . . . , Vn;W ). This is a subspace of the vector space of all maps
V1 × · · · × Vn → W .

2.2. Tensor algebra of a vector space

Let V be a finite dimensional vector space over F. A polylinear func-
tional

T : V × · · · × V︸ ︷︷ ︸
p times

× V X × · · · × V X︸ ︷︷ ︸
q times

→ F

is called a tensor on V of type (p, q) and order or valency p+q. It is also
said to be a mixed tensor p times covariant and q times contravariant.

Denote by Tensqp(V ) the set of all tensors on a vector space V of type

(p, q). As a subspace of L(V, . . . , V, V
X
, . . . , V

X
;F), Tensqp(V ) is a vector

space over the same ground field F as V . If one of the numbers p and
q is zero, it is not mentioned in the notation Tensqp(V ). Then we write
Tensp(V ) or Tensq(V ).

Special cases:

• A tensor V → F of type (1, 0) is a covector. Thus Tens1(V ) = V
X
.

• A tensor V
X → F of type (0, 1) is an element of the double dual

space (V
X
)
X
, and, via the canonical identification of (V

X
)
X

with V ,
this is a vector. Thus Tens1(V ) = V .

• A tensor V × V → F of type (2, 0) is a bilinear form on V .
• A tensor V × V X → F of type (1, 1) defines (and is defined by) a

linear map V → (V
X
)
X

= V , thus it is identified with an operator
V → V . Therefore Tens11(V ) = L(V ).

2.3. Coordinates in the spaces of tensors

Let e1, . . . , en be a basis in a vector space V and e1, . . . en be the dual
basis in V

X
. Consider a tensor T : V p × (V

X
)q → F. It is defined by its

values on lists of base vectors

T (ei1 , . . . , eip , e
j1 , . . . , ejq) = T

j1,...,jq
i1,...,ip

These values are called coordinates of T . A tensor of type (p, q) on a vec-
tor space of dimension n has np+q coordinates. A tensor, as a polylinear
function on vectors v1, . . . , vp and covectors u1, . . . , uq is determined by
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3. SYMMETRIC AND SKEW-SYMMETRIC 16

A picture for the composition σ1 ◦ σ1 of permutations σ0 and σ2 can
be obtained from the pictures for σ0 and σ2 by drawing them one over
the other as follows.

2 3 4 51

2 3 4 51

2 3 4 51

=⇒

2 3 4 51

2 3 4 51

3.A. Theorem. Any permutation can be presented as a composition
of transpositions.

Proof. On a picture of arbitrary permutation, arcs can be drawn in
such a way that no two intersection points of the arcs
were on the same horizontal line. Then they can be sep-
arated from each other by horizontal lines. This gives
a desired decomposition of the permutation into a com-
position of permutations each of which is presented by a
picture with one intersection point. Those permutations
are transpositions.

2 3 4 51

2 3 4 51

The arcs, which start at points i and j with i < j and finish at σ(i)
and σ(j), must intersect if σ(i) > σ(j). They may intersect in several
points, but the parity of the number of points depends on the mutual
position of σ(i) and σ(j). Namely, if σ(i) > σ(j), then the number of
intersection points is odd, if σ(i) < σ(j), then it is even.

A permutation which is a composition of odd number of transposi-
tions is said to be odd , otherwise it is said to be even. The sign signσ of
a permutation σ is defined to be −1 if σ is odd and +1 if σ is even.

3.2. Symmetric tensors

A polylinear form T : V k → F is called symmetric if its values are not
affected by any permutations of the arguments. In other words, T is
symmetric, if, for any permutation σ : {1, . . . , k} → {1, . . . , k} and
any v1, . . . , vk ∈ V ,

T (v1, . . . , vk) = T (vσ(1), . . . , vσ(k)).
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