
Hamiltonian Formulation

� Newtonian → Lagrangian → Hamiltonian

� Describe same physics and produce same results
� Difference is in the viewpoints

� Flexibility of coordinate transformation

� Hamiltonian formalism linked to the development of

� Hamilton-Jacobi theory
� Classical perturbation theory
� Quantum mechanics
� Statistical mechanics
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Lagrangian describing a system where angular momentum is 
conserved, does not depend on time explicitly, i.e.

0=
dt

dL

Hamiltonian

we can express the dynamics in terms of the 2n + 1
variables qi, pi, and t.

The Lagrangian:

Therefore, differentiating w.r.t. time:
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Conservation Theorems 
and Physical Significance of Hamiltonian

� Some problems involve cyclic coordinates  Hamiltonian procedure  
is adapted to treatment of such problems

Cyclic coordinates

A coordinate       which does not appear in the Lagrangian.

Then Lagrange’s equations → its conjugate momentum      is 
constant.
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⇒ A cyclic coordinate will also be absent from H
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From equations (v) and (vi): kzzm −=&&
or 02

0 =+ zz ω&&

where
m

k=2
0ω

Therefore, motion in z-direction is simple harmonic motion.

Constant2 == θθ
&mRp

Equations (iv) and (vi) give:

⇒ angular momentum about the z-axis is constant of motion
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Example-2:

Use the Hamiltonian method to find the equations of motion for a

spherical pendulum of mass m and length b .
Solution:
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mg

The generalized coordinates are θ and φ . 
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Using spherical polar coordinates:

φθ cossinbx =
φθ sinsinby =

θcosbz =
K.E. is given by:

and P.E. : mgzV −=

Perform simple calculations to transform the K.E. and P.E. equations 
using spherical coordinates.
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Example-3:

Consider a particle of mass mmoving freely in a conservative force field, 

whose potential function is V. Find the Hamiltonian function and show 

that the canonical equations of motion reduce to Newton’s equations. Use 
rectangular coordinates.

Solution:

For a particle moving freely in a conservative field:

K.E.: )( 222
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P.E.: ),,( zyxVV =
The Lagrangian is: VTL −=
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Generalised momenta are then:
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