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2 The Definition

As I’ve already stated, I am assuming that you have seen complex numbers to this point and that

you’re aware that i =
√
−1 and so i2 = −1. This is an idea that most people first see in an algebra

class (or wherever they first saw complex numbers) and i =
√
−1 is defined so that we can deal

with square roots of negative numbers as follows,

√
−100 =

√
(100) (−1) =

√
100

√
−1 =

√
100 i = 10 i

What I’d like to do is give a more mathematical definition of a complex numbers and show that i2 = −1

(and hence i =
√
−1 can be thought of as a consequence of this definition. We’ll also take a look

at how we define arithmetic for complex numbers.

What we’re going to do here is going to seem a little backwards from what you’ve probably already

seen but is in fact a more accurate and mathematical definition of complex numbers. Also note

that this section is not really required to understand the remaining portions of this document. It is

here solely to show you a different way to define complex numbers.

So, let’s give the definition of a complex number.

Given two real numbers a and b we will define the complex number z as,

z = a+ bi

Note that at this point we’ve not actually defined just what i is at this point. The number a is called

the real part of z and the number b is called the imaginary part of z and are often denoted as,

Rez = a Imz = b

There are a couple of special cases that we need to look at before proceeding. First, let’s take a

look at a complex number that has a zero real part,

z = 0 + bi = bi

In these cases, we call the complex number a pure imaginary number.

Next, let’s take a look at a complex number that has a zero imaginary part,

z = a+ 0i = a

In this case we can see that the complex number is in fact a real number. Because of this we can

think of the real numbers as being a subset of the complex numbers.

We next need to define how we do addition and multiplication with complex numbers. Given two

complex numbers z1 = a+bi and z2 = c+di we define addition and multiplication as follows,

z1 + z2 = (a+ c) + (b+ d) i

z1z2 = (ac− bd) + (ad+ cb) i
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Complex Number Primer Arithmetic

Therefore, the multiplicative inverse of the complex number z is,

z−1 =
a

a2 + b2
− b

a2 + b2
i (6)

As you can see, in this case, the “exponent” of −1 is not in fact an exponent! Again, you really

need to forget some notation that you’ve become familiar with in other math courses.

So, now that we have the definition of the multiplicative inverse we can finally define division of

two complex numbers. Suppose that we have two complex numbers z1 and z2 then the division of

these two is defined to be,
z1
z2

= z1 z
−1
2 (7)

In other words, division is defined to be the multiplication of the numerator and the multiplicative

inverse of the denominator. Note as well that this actually does match with the process that we

used above. Let’s take another look at one of the examples that we looked at earlier only this time

let’s do it using multiplicative inverses. So, let’s start out with the following division.

6 + 3i

10 + 8i
= (6 + 3i) (10 + 8i)−1

We now need the multiplicative inverse of the denominator and using Equation 6 this is,

(10 + 8i)−1 =
10

102 + 82
− 8

102 + 82
i =

10− 8i

164

Now, we can do the multiplication,

6 + 3i

10 + 8i
= (6 + 3i) (10 + 8i)−1 = (6 + 3i)

10− 8i

164
=

60− 48i+ 30i− 24i2

164
=

21

41
− 9

82
i

Notice that the second to last step is identical to one of the steps we had in the original working of

this problem and, of course, the answer is the same.

As a final topic let’s note that if we don’t want to remember the formula for the multiplicative inverse

we can get it by using the process we used in the original multiplication. In other words, to get the

multiplicative inverse we can do the following

(10 + 8i)−1 =
1

(10 + 8i)

10− 8i

(10− 8i)
=

10− 8i

102 + 82

As you can see this is essentially the process we used in doing the division initially.

© Paul Dawkins – 9 –

Preview from Notesale.co.uk

Page 9 of 29



Complex Number Primer Conjugate and Modulus

(b) z1 − z2 = 13− 2i ⇒ z1 − z2 = 13− 2i = 13 + 2i

(c) z1 − z2 = 5 + i−
(
−8 + 3i

)
= 5− i− (−8− 3i) = 13 + 2i

We can see that results from (b) and (c) are the same as the fact implied they would

be.

There is another nice fact that uses conjugates that we should probably take a look at.However,

instead of just giving the fact away let’s derive it.We’ll start with a complex number z = a+ bi and

then perform each of the following operations.

z + z = a+ bi+ (a− bi) z − z = a+ bi− (a− bi)

= 2a = 2bi

Now, recalling that Re z = a and Im z = b we see that we have,

Rez =
z + z

2
Imz =

z − z

2i
(13)

Modulus

The other operation we want to take a look at in this section is the modulus of a complex num-

ber.Given a complex number z = a+ bi the modulus is denoted by |z| and is defined by

|z| =
√
a2 + b2 (14)

Notice that the modulus of a complex number is always a real number and in fact it will never be

negative since square roots always return a positive number or zero depending on what is under

the radical.

Notice that if z is a real number (i.e. z = a+ 0i) then,

|z| =
√
a2 = |a|

where the | · | on the z is the modulus of the complex number and the | · | on the a is the absolute

value of a real number (recall that in general for any real number a we have
√
a2 = |a|).So, from

this we can see that for real numbers the modulus and absolute value are essentially the same

thing.

We can get a nice fact about the relationship between the modulus of a complex number and its

real and imaginary parts.To see this let’s square both sides of Equation 14 and use the fact that

Re z = a and Im z = b.Doing this we arrive at

|z|2 = a2 + b2 = (Re z)2 + (Im z)2

Since all three of these terms are positive we can drop the Im z part on the left which gives the

following inequality,

|z|2 = (Re z)2 + (Im z)2 ≥ (Re z)2

© Paul Dawkins – 11 –

Preview from Notesale.co.uk

Page 11 of 29



Complex Number Primer Polar & Exponential Form

In this interpretation we call the x-axis the real axis and the y-axis the imaginary axis. We often

call the xy-plane in this interpretation the complex plane.

Note as well that we can now get a geometric interpretation of the modulus. From the image above,

we can see that |z| =
√
a2 + b2 is nothing more than the length of the vector that we’re using to

represent the complex number z = a + bi. This interpretation also tells us that the inequality

|z1| < |z2| means that z1 is closer to the origin (in the complex plane) than z2 is.

Polar Form

Let’s now take a look at the first alternate form for a complex number. If we think of the non-zero

complex number z = a+ bi as the point (a, b) in the xy-plane we also know that we can represent

this point by the polar coordinates (r, θ), where r is the distance of the point from the origin and θ

is the angle, in radians, from the positive x-axis to the ray connecting the origin to the point.
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