
1.3 The complex plane

Exercise 1. Prove (3.4) and give necessary and sufficient conditions for equality.

Solution. Let z and w be complex numbers. Then

||z| − |w|| = ||z− w+ w| − |w||
≤ ||z− w| + |w| − |w||
= ||z− w||
= |z− w|

Notice that|z| and |w| is the distance from z and w, respectively, to the origin while |z− w| is the distance
between z and w. Considering the construction of the impliedtriangle, in order to guarantee equality, it is
necessary and sufficient that

||z| − |w|| = |z− w|
⇐⇒ (|z| − |w|)2

= |z− w|2

⇐⇒ (|z| − |w|)2
= |z|2 − 2Re(zw̄) + |w|2

⇐⇒ |z|2 − 2|z||w| + |w|2 = |z|2 − 2Re(zw̄) + |w|2

⇐⇒ |z||w| = Re(zw̄)

⇐⇒ |zw̄| = Re(zw̄)

Equivalently, this is z̄w ≥ 0. Multiplying this by w
w, we get z̄w · w

w = |w|2 ·
z
w ≥ 0 if w , 0. If

t = z
w =

(
1
|w|2

)

· |w|2 · z
w. Then t≥ 0 and z= tw.

Exercise 2. Show that equality occurs in (3.3) if and only if zk/zl ≥ 0 for any integers k and l,1 ≤ k, l ≤ n,
for which zl , 0.

Solution. Not available.

Exercise 3. Let a∈ R and c> 0 be fixed. Describe the set of points z satisfying

|z− a| − |z+ a| = 2c

for every possible choice of a and c. Now let a be any complex number and, using a rotation of the plane,
describe the locus of points satisfying the above equation.

Solution. Not available.

1.4 Polar representation and roots of complex numbers

Exercise 1. Find the sixth roots of unity.

Solution. Start with z6 = 1 and z= rcis(θ), therefore r6cis(6θ) = 1. Hence r= 1 and θ = 2kπ
6 with k ∈

{−3,−2,−1,0,1,2}. The following table gives a list of principle values of arguments and the corresponding
value of the root of the equation z6

= 1.
θ0 = 0 z0 = 1
θ1 =

π
3 z1 = cis(π3)

θ2 =
2π
3 z2 = cis(2π

3 )
θ3 = π z3 = cis(π) = −1
θ4 =

−2π
3 z4 = cis(−2π

3 )
θ5 =

−π
3 z5 = cis(−π3 )

5
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It remains to verify that f g is uniformly continuous, since we have already shown that f g is bounded. We
have

ρ( f (x)g(x), f (y)g(y)) = | f (x)g(x) − f (y)g(y)| =
= | f (x)g(x) − f (x)g(y) + f (x)g(y) − f (y)g(y)|
≤ | f (x)g(x) − f (x)g(y)| + | f (x)g(y) − f (y)g(y)|
≤ | f (x)| |g(x) − g(y)| + | f (x)| |g(y) − g(y)|
≤ M1ε2 + M2ε1,

whenever d(x, y) < min(δ1, δ2). So choosingε = M1ε2 + M2ε1 andδ = min(δ1, δ2), we have∀ε > 0 ∃δ > 0
such that

| f (x)g(x) − f (y)g(y)| < ε
whenever d(x, y) < δ. Thus, f g is uniformly continuous and bounded.

Exercise 4. Is the composition of two uniformly continuous (Lipschitz)functions again uniformly continu-
ous (Lipschitz)?

Solution. Not available.

Exercise 5. Suppose f: X→ Ω is uniformly continuous; show that if{xn} is a Cauchy sequence in X then
{ f (xn)} is a Cauchy sequence inΩ. Is this still true if we only assume that f is continuous? (Prove or give
a counterexample.)

Solution. Assume f: X → Ω is uniformly continuous, that is, for everyε > 0 there existsδ > 0 such that
ρ( f (x), f (y)) < ε if d(x, y) < δ. If {xn} is a Cauchy sequence in X, we have, for everyε1 > 0 there exists
N ∈ N such that d(xn, xm) < ε1 for all n,m≥ N. But then, by the uniform continuity, we have that

ρ( f (xn), f (xm)) < ε ∀n,m≥ N

whenever d(xn, xm) < δ which tells us that{ f (xn)} is a Cauchy sequence inΩ.
If f is continuous, the statement is nottrue. Here is a counterexample: Let f(x) = 1

x which is continuous
on (0,1). The sequence xn =

1
n is apparently convergent and therefore a Cauchy sequence inX. But

{ f (xn)} = { f ( 1
n)} = {n} is obviously not Cauchy. Note that f(x) = 1

x is not uniformly continuous on(0,1).
To see that pickε = 1. Then there is noδ > 0 such that| f (x)− f (y)| < 1 whenever|x− y| < δ. Assume there
exists such aδ. WLOG assumeδ < 1 since the interval(0,1) is considered. Let y= x+ δ/2 and set x= δ/2,
then

| f (x) − f (y)| =
∣
∣
∣
∣
∣

1
x
− 1

y

∣
∣
∣
∣
∣
=

y− x
xy
=

δ/2
δ/2· δ =

1
δ
> 1,

that is no matter whatδ < 1 we choose, we always obtain| f (x) − f (y)| > 1. Therefore f(x) = 1
x cannot be

uniformly continuous.

Exercise 6. Recall the definition of a dense set (1.14). Suppose thatΩ is a complete metric space and that
f : (D,d) → (Ω; ρ) is uniformly continuous, where D is dense in(X,d). Use Exercise 5 to show that there
is a uniformly continuous function g: X→ Ω with g(x) = f (x) for every x in D.

Solution. Not available.

Exercise 7. Let G be an open subset ofC and let P be a polygon in G from a to b. Use Theorems 5.15
and 5.17 to show that there is a polygon Q⊂ G from a to b which is composed of line segments which are
parallel to either the real or imaginary axes.
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Solution. Not available.

Exercise 8. Use Lebesgue’s Covering Lemma (4.8) to give another proof ofTheorem 5.15.

Solution. Suppose f: X → Ω is continuous and X is compact. To show f is uniformly continuous. Let
ε > 0. Since f is continuous, we have for all x∈ X there is aδx > 0 such thatρ( f (x), f (y)) < ε/2 whenever
d(x, y) < δx. In addition,

X =
⋃

x∈X
B(x; δx)

is an open cover of X. Since X is by assumption compact (it is also sequentially compact as stated in
Theorem 4.9 p. 22), we can use Lebesgue’s Covering Lemma 4.8 p. 21 to obtain aδ > 0 such that x∈ X
implies that B(x, δ) ⊂ B(z; δz) for some z∈ X. More precisely, x, y ∈ B(z; δz) and therefore

ρ( f (x), f (z)) ≤ ρ( f (x), f (z)) + ρ( f (z), f (y)) <
ε

2
+
ε

2
= ε

and hence f is uniformly continuous on X.

Exercise 9. Prove the following converse to Exercise 2.5. Suppose(X,d) is a compact metric space having
the property that for everyε > 0 and for any points a, b in X, there are points z0, z1, . . . , zn in X with z0 = a,
zn = b, and d(zk−l , zk) < ε for 1 ≤ k ≤ n. Then(X,d) is connected. (Hint: Use Theorem 5.17.)

Solution. Not available.

Exercise 10. Let f and g be continuous functions from(X,d) to (Ω, p) and let D be a dense subset of X.
Prove that if f(x) = g(x) for x in D then f= g. Use this to show that the function g obtained in Exercise 6
is unique.

Solution. Not available.

2.6 Uniform convergence

Exercise 1. Let { fn} be a sequence of uniformly continuous functions from(X,d) into (Ω, ρ) and suppose
that f = u − − lim fn exists. Prove that f is uniformly continuous. If each fn is a Lipschitz function with
constant Mn andsupMn < ∞, show that f is a Lipschitz function. IfsupMn = ∞, show that f may fail to
be Lipschitz.

Solution. Not available.
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Chapter 3

Elementary Properties and Examples of
Analytic Functions

3.1 Power series

Exercise 1. Prove Proposition 1.5.

Solution. Not available.

Exercise 2. Give the details of the proof of Proposition 1.6.

Solution. Not available.

Exercise 3.Prove thatlim sup(an+bn) ≤ lim supan+ lim supbn andlim inf(an+bn) ≥ lim inf an+ lim inf bn

for bounded sequences of real numbers{an} and{bn}.

Solution. Let r > lim supn→∞ an (we know there are only finitely many by definition) and let s> lim supn→∞
(same here, there are only finitely many by definition). Then r+ s > an + bn for all but finitely many n’s.
This however, implies that

r + s≥ lim sup
n→∞

(an + bn).

Since this holds for any r> lim supn→∞ an and s> lim supn→∞ bn, we have

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

Let r < lim inf n→∞ an (we know there are only finitely many by definition) and let s< lim inf n→∞ (same
here, there are only finitely many by definition). Then r+ s < an + bn for all but finitely many n’s. This
however, implies that

r + s≤ lim inf
n→∞

(an + bn).

Since this holds for any r< lim inf n→∞ an and s< lim inf n→∞ bn, we have

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn.

Exercise 4. Show thatlim inf an ≤ lim supan for any sequence inR.
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Solution. Let m = lim inf n→∞ an and bn = inf {an,an+1, . . .}. Let M = lim supn→∞ an. Take any s> M.
Then, by definition of thelim supn→∞ an = M, we obtain that an < s for infinitely many n’s which implies
that bn < s for all n and hencelim supn→∞ bn = m < s. This holds for all s> M. But the infimum of all
these s’s is M. Therefore m≤ M which is

lim inf
n→∞

an ≤ lim sup
n→∞

an.

Exercise 5. If {an} is a convergent sequence inR and a= lim an, show that a= lim inf an = lim supan.

Solution. Suppose that{an} is a convergent sequence inR with limit a = limn→∞ an. Then by definition, we
have:∀ε > 0 ∃N > 0 such that∀n ≥ N, we have|an − a| ≤ ε, that is a− ε ≤ an ≤ a+ ε. This means that all
but finitely many an’s are≤ a+ ε and≥ a− ε. This shows that

a− ε ≤ lim inf
n→∞

an
︸     ︷︷     ︸

=:m

≤ a+ ε

and
a− ε ≤ lim sup

n→∞
an

︸     ︷︷     ︸

=:M

≤ a+ ε.

By the previous Exercise 4, we also have

a− ε ≤ m≤ M ≤ a+ ε.

Hence,
0 ≤ M −m≤ 2ε.

Sinceε > 0 is arbitrary, we obtain m= M and further

a− ε ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ a+ ε,

we obtain
lim inf

n→∞
an = lim sup

n→∞
an = a.

Exercise 6. Find the radius of convergence for each of the following power series: (a)
∑∞

n=0 anzn, a ∈ C;
(b)

∑∞
n=0 an2

zn, a ∈ C; (c)
∑∞

n=0 knzn, k an integer, 0; (d)
∑∞

n=0 zn! .

Solution. a) We have
∑∞

n=0 anzn
=

∑∞
k=0 bkzn with bk = ak, a ∈ C. We also have,

lim sup
k→∞

|bk|1/k = lim sup
k→∞

|ak|1/k = lim sup
k→∞

|a| = |a|.

Therefore, R= 1/|a|, so

R=






1
|a| , a , 0

∞, a = 0
.

b) In this case, bn = an2
where a∈ C.

R = lim
n→∞

∣
∣
∣
∣
∣

bn

bn+1

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

an2

a(n+1)2

∣
∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

an2

an2+2n+1

∣
∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

1
a2n+1

∣
∣
∣
∣
∣

= lim
n→∞

1
|a|2n+1

=






0, |a| > 1

1, |a| = 1

∞, |a| < 1

.
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c) Now, bn = kn, k is an integer, 0. We have

R= lim sup
n→∞

|bn|1/n = lim sup
n→∞

|kn|1/n = lim sup
n→∞

|k| = |k|.

So

R=
1
|k| =






1
k , k > 0, k integer

− 1
k , k < 0, k integer

.

d) We can write
∑∞

n=0 zn!
=

∑∞
k=0 akzk where

ak =






0, k = 0

2, k = 1

1, k = n!,n ∈ N,n > 1

0, otherwise

Thus,
lim sup

k→∞
|ak|1/k = lim sup

k→∞
|1|1/k!

= 1.

Therefore1/R= 1 which implies R= 1.

Exercise 7. Show that the radius of convergence of the power series
∞∑

n=1

(−1)n

n
zn(n+1)

is 1, and discuss convergence for z= 1,−1, and i. (Hint: The nth coefficient of this series is not(−1)n/n.)

Solution. Rewrite the power series in standard form, then

∞∑

n=1

(−1)n

n
zn(n+1)

=

∞∑

n=1

akz
k with ak =






(−1)n

n if ∃ n ∈ N s.t. k= n(n+ 1)

0 else
.

To find the radius of convergence we use the root criterion andtherefore need the estimates

1 ≤ n(n+1)
√

n ≤ n
√

n for n ∈ N.

The first inequality is immediate from the fact that n≥ 1 and hence n
1

n(n+1) ≥ 1. For the second inequality
note that

n ≤ nn+1

⇔ n
1

n(n+1) ≤ n
1
n

⇔ n(n+1)
√

n ≤ n
√

n .

Using this one obtains

n(n+1)

√

| (−1)n

n
| = 1

n(n+1)
√

n
≤ 1

and

n(n+1)

√

| (−1)n

n
| = 1

n(n+1)
√

n
≥ 1

n
√

n
.
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Vague memories of calculus classes tell me thatn
√

n→ 1, thus 1
R = lim sup n(n+1)

√
an = 1, i.e. R= 1.

If z = 1 the series reduces to
∑∞

n=1
(−1)n

n which converges with the Leibniz Criterion.
If z = −1 we note that the exponents n(n + 1) are always even integers and therefore the series is the

same as in the previous case of z= 1.
Now let z= i. The expression in(n+1) will always be real, so if the series converges at z= i, it converges

to a real number. We also note that formally

∞∑

n=1

(−1)n

n
in(n+1)

=

∞∑

n=1

cn with






1
n ifn mod 4∈ {0,1}
− 1

n if n mod 4∈ {2,3}
.

Define the partial sums Sk :=
∑k

n=0 ck. We claim that the following chain of inequalities holds

0 ≤ S4k+3
a)
< S4k

b)
< S4k+4

c)
< S4k+2

d)
< S4k+1 ≤ 1.

To verify this, note that

S4k+3 − S4k = c4k+1 + c4k+2 + c4k+3 = −
16k2

+ 8k− 1
(4k+ 1)(4k+ 2)(4k+ 3)

< 0, hence a)

S4k+4 − S4k = c4k+3 + c4k+4 = −
1

4k+ 3
+

1
4k+ 4

< 0, hence c)

S4k+2 − S4k+1 = c4k+2 < 0, hence d).

Relation b) is obvious and so are the upper bound c1 = 1 and the non-negativity constraint. We remark that
{S4k+l}k≥1, l ∈ {0,1,2,3} describe bounded and monotone subsequences that converge to some point. Now
that |cn| ↘ 0 the difference between S4k+l and S4k+m, l,m ∈ 0,1,2,3 tends to zero, i.e. all subsequences
converge to the same limit. Therefore the power series converges also in the case of z= i.

3.2 Analytic functions

Exercise 1. Show that f(z) = |z|2 = x2
+ y2 has a derivative only at the origin.

Solution. The derivative of f at z is given by

f ′(z) = lim
h→0

f (z+ h) − f (z)
h

, h ∈ C

provided the limit exist. We have

f (z+ h) − f (z)
h

=
|z+ h|2 − |z|2

h
=

(z+ h)(z̄+ h̄) − zz̄
h

=
zz̄+ hz̄+ zh̄+ hh̄− zz̄

h

= z̄+ h̄+ z
h̄
h
=: D.

If the limit of D exists, it may be found by letting the point h= (x, y) approach the origin (0,0) in the complex
planeC in any manner.
1.) Take the path along the real axes, that is y= 0. Thenh̄ = h and thus

D = z̄+ h+ z
h
h
= z̄+ h+ z
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1. Claim: cos(z) cos(w) − sin(z) sin(w) = cos(z+ w).
Proof:

cos(z) cos(w) − sin(z) sin(w) =
eiz
+ e−iz

2
eiw
+ e−iw

2
− eiz − e−iz

2i
eiw − e−iw

2i

=
1
4

(

eizeiw
+ e−ize−iw

)

+
1
4

(

eizeiw
+ e−ize−iw

)

=
1
2

eizeiw
+

1
2

e−ize−iw

=
1
2

(

eizeiw
+ e−ize−iw

)

= cos(z+ w).

2. Claim: sin(z) cos(w) + cos(z) sin(w) = sin(z+ w).
Proof:

sin(z) cos(w) + cos(z) sin(w) =
eiz − e−iz

2i
eiw
+ e−iw

2
+

eiz
+ e−iz

2
eiw − e−iw

2i

=
1
4i

(

eizeiw − e−ize−iw
)

+
1
4i

(

eizeiw − e−ize−iw
)

=
1
2i

eizeiw − 1
2

e−ize−iw

=
1
2i

(

eizeiw − e−ize−iw
)

= sin(z+ w).

Exercise 8. Definetanz= sinz
cosz; where is this function defined and analytic?

Solution. Since bothsinz andcosz are analytic in the entire complex plane, it follows from the discussion
in the text following Definition 2.3 thattanz = sinz

cosz is analytic wherevercosz , 0. Now,cosz = 0 implies
that z is real and equal to an odd multiple ofπ

2 . Thus let

G ≡
{

(2k+ 1)π
2

∣
∣
∣
∣ k ∈ Z

}

.

Thentanz is defined and analytic onC−G. If z∈ G, thencosz= 0 sotanz is undefined on the non-extended
complex plane.

Exercise 9. Suppose that zn, z ∈ G = C − {z : z ≤ 0} and zn = rneiθn, z = reiθ where−π < θ, θn < π. Prove
that if zn→ z thenθn→ θ and rn→ r.

Solution. Not available.

Exercise 10.Prove the following generalization of Proposition 2.20. Let G andΩ be open inC and suppose
f and h are functions defined on G, g: Ω → C and suppose that f(G) ⊂ Ω. Suppose that g and h are
analytic, g′(ω) , 0 for anyω, that f is continuous, h is one-one, and that they satisfy h(z) = g( f (z)) for z in
G. Show that f is analytic. Give a formula for f′(z).

Solution. Not available.

Exercise 11. Suppose that f: G → C is a branch of the logarithm and that n is an integer. Prove that
zn
= exp(n f(z)) for all z in G.
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For the real and imaginary part of w the following equations must hold

a =
1
2

(

r + 1
r

)

cosθ

b =
1
2

(

r − 1
r

)

sinθ.
(3.7)

If f (z) = w has imaginary part b= 0 then sinθ = 0 and |cosθ| = 1. Therefore points of the form
a+ ib,a ∈ [−1,1],b = 0 cannot be in the range of f . For all other points the equations(3.7) can be solved
for r and θ uniquely (after restricting the argument to[−π, π)).
Given any value of r∈ (0,1), the graph of f(reiθ) as a function ofθ looks like an ellipse. In fact from

formulas (3.7) we see that
(

a
1
2 (r+ 1

r )

)2
+

(

b
1
2 (1− 1

r )

)2
= 1.

If we fix the argumentθ and let r vary in(0,1) it follows from from equation (3.7) that the graph of f(reiθ)
is a hyperbola and it degenerates to rays if z is purely real orimaginary. In the caseθ ∈ {(2k+ 1)π | k ∈ Z}
the graph of f in dependence on r is on the imaginary axis and for θ ∈ {2kπ | k ∈ Z} the graph of f(reiθ) is

either(−∞,−1) or (1,∞). If cosθ , 0 andsinθ , 0 then
(

a
cosθ

)2 −
(

b
sinθ

)2
= 1.

Exercise 14. Suppose that one circle is contained inside another and thatthey are tangent at the point a.
Let G be the region between the two circles and map G conformally onto the open unit disk. (Hint: first try
(z− a)−1.)

Solution. Using the hint, define the Möbius transformation T(z) = (z− a)−1 which sends the region G
between two lines. Afterward applying a rotation followed by a translation, it is possible to send this region
to any region bounded by two parallel lines we want. Hence, choose S(z) = cz+ d where|c| = 1 such that

S(T(G)) =
{

x+ iy : 0 < y <
π

2

}

.

Applying the exponential function to this region yields theright half plane

exp(S(T(G))) = {x+ iy : x > 0}.

Finally, the Möbius transformation

R(z) =
z− 1
z+ 1

maps the right half plane onto the unit disk (see page 53). Hence the function f defined by R(exp(S(T(z))))
maps G onto D and is the desired conformal mapping ( f is a composition of conformal mappings). Doing
some simplifications, we obtain

f (z) =
e

c
z−a+d − 1

e
c

z−a+d
+ 1

where the constants c and d will depend on the circle location.

Exercise 15.Can you map the open unit disk conformally onto{z : 0 < |z| < 1}?

Solution. Not available.

Exercise 16. Map G = C − {z : −1 ≤ z ≤ 1} onto the open unit disk by an analytic function f . Can f be
one-one?

Solution. Not available.

Exercise 17. Let G be a region and suppose that f: G → C is analytic such that f(G) is a subset of a
circle. Show that f is constant.
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Exercise 24. Let T be a Möbius transformation, T, the identity. Show that a Möbius transformation S
commutes with T if S and T have the same fixed points. (Hint: UseExercises 21 and 22.)

Solution. Let T and S have the same fixed points. To show TS= S T, T, id.

? : Suppose T and S have two fixed points, say z1 and z2. Let M be a Möbius transformation with M(z1) = 0
and M(z2) = ∞. Then

MS M−1(0) = MS M−1Mz1 = MS z1 = Mz1 = 0

and
MS M−1(∞) = MS M−1Mz2 = MS z2 = Mz2 = ∞.

Thus MS M−1 is a dilation by exercise 22 a) since MS M−1 has 0 and∞ as its only fixed points. Similar,
we obtain MT M−1(0) = 0 and MT M−1(∞) = ∞ and therefore is also a dilation. It is easy to check that
dilations commute (define C(z) = az, a> 0 and D(z) = bz, b> 0, then CD(z) = abz= baz= DC(z)), thus

(MT M−1)(MS M−1) = (MS M−1)(MT M−1)

⇒ MTS M−1
= MS T M−1

⇒ TS = S T.

? : Suppose T and S have one fixed points, say z. Let M be a Möbius transformation with M(z) = ∞. Then

MS M−1(∞) = MS M−1Mz= MS z= Mz= ∞.
Thus MS M−1 is a translation by exercise 22 b) since MS M−1 has∞ as its only fixed point. Similar, we
obtain MT M−1(∞) = ∞ and therefore is also a translation. It is easy to check that translations commute
(define C(z) = z+ 1 and D(z) = z+ b, b> 0, then CD(z) = z+ a+ b = z+ b+ a = DC(z)), thus

(MT M−1)(MS M−1) = (MS M−1)(MT M−1)

⇒ MTS M−1
= MS T M−1

⇒ TS = S T.

Exercise 25.Find all the abelian subgroups of the group of Möbius transformations.

Solution. Not available.

Exercise 26. 26. (a) Let GL2(C) = all invertible 2× 2 matrices with entries inC and letM be the group

of Möbius transformations. Defineϕ : GL2(C) → M by ϕ

(

a b
c d

)

=
az+b
cz+d . Show thatϕ is a group

homomorphism of GL2(C) ontoM. Find the kernel ofϕ.
(b) Let S L2(C) be the subgroup of GL2(C) consisting of all matrices of determinant 1. Show that the image
of S L2(C) underϕ is all ofM. What part of the kernel ofϕ is in S L2(C)?

Solution. a) We have to check that if

A =

(

a b
c d

)

and B=

(

â b̂
ĉ d̂

)

thenϕ(AB) = ϕ(A) ◦ ϕ(B). A simple calculation shows that this is true. To find the kernel of the group
homomorphism we have to find all z such thataz+b

cz+d = z. This is equivalent to az+ b = cz2
+ dz and by

comparing coefficients we obtain b= c = 0 and a= d. Therefore, the kernel is given by N= ker(ϕ) = {λI :
λ ∈ C×}. Note that the kernel is a normal subgroup of GL2(C).
b) Restrictingϕ to S L2(C) still yields a surjective map since for any matrix A∈ GL2(C) both A and
the modification M= 1√

detA
A have the same image and the modification matrix M has by construction

determinant 1. The kernel of the restriction is simply N∩ S L2(C) = {±I }.
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0 ≤ t ≤ 1}. Soγ′1(t) = i andγ′2(t) = −1. Therefore,

∫

γ

f =
∫

γ1

f +
∫

γ2

f

=

∫

γ1

|z|2dz+
∫

γ2

|z|2dz

=

∫ 1

0
(t2 + 1)(i)dt+

∫ 1

0
((1− t)2

+ 1)(−1)dt

= i
∫ 1

0
(t2 + 1)dt−

∫ 1

0
(t2 − 2t + 2)dt

= i

[

t3

3
+ t

]1

0

−
[

t3

3
− t2 + 2t

]1

0

=
4
3

i −
(

1
3
− 1+ 2

)

=
4
3

i − 4
3

=
4
3

(−1+ i)

Exercise 9. Defineγ : [0,2π] → C byγ(t) = exp(int) where n is some integer (positive, negative, or zero).
Show that

∫

γ

1
z dz= 2πin.

Solution. Clearly,γ(t) = eint is continuous and smooth on[0,2π]. Thus

∫

γ

z−1 dz=
∫ 2π

0
e−intineint dt =

∫ 2π

0
in dt = in(2π − 0) = 2πin.

Exercise 10.Defineγ(t) = eit for 0 ≤ t ≤ 2π and find
∫

γ
zn dz for every integer n.

Solution. Clearly,γ(t) = eint is continuous and smooth on[0,2π] (It is the unit circle).
Case 1: n= −1

∫

γ

z−1 dz=
∫ 2π

0
e−it ieit dt = i

∫ 2π

0
dt = 2πi.

Case 2: n, −1

∫

γ

zn dz =

∫ 2π

0
eintieit dt = i

∫ 2π

0
ei(n+1)t dt = t

[

ei(n+1)t

i(n+ 1)

]2π

0

=
1

n+ 1

[

ei(n+1)t
]2π

0
=

1
n+ 1

[

ei(n+1)2π − 1
]

=
1

n+ 1
[cos((n+ 1)2π) − i sin((n+ 1)2π)1] =

1
n+ 1

[1− i·0− 1]

= 0.

Exercise 11.Letγ be the closed polygon[1 − i,1+ i,−1+ i,−1− i,1− i]. Find
∫

γ

1
z dz.
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0 ≤ t ≤ 2π. Clearly f(z) is analytic onC andB̄(0; 2< r < ∞) ⊂ C. Then,

f (−2i) =
1

2πi

∫

γ

f (w)
w+ 2i

dw ⇐⇒ 1 =
1

2πi

∫

γ

f (w)
w+ 2i

dw

⇐⇒
∫

γ

1
z+ 2i

dz= 2πi

if 2 < r < ∞. Similarly,

f (2i) =
1

2πi

∫

γ

f (w)
w− 2i

dw ⇐⇒
∫

γ

1
z− 2i

dz= 2πi.

It follows that,

∫

γ

z2
+ 1

z(z2 + 4)
dz=

1
4

∫

γ

1
z

dz+
3
8

∫

γ

1
z− 2i

dz+
3
8

∫

γ

1
z+ 2i

dz

=
1
4

(2πi) +
3
8

(2πi) +
3
8

(2πi)

= 2πi

Exercise 11.Find the domain of analyticity of

f (z) =
1
2i

log

(

1+ iz
1− iz

)

;

also, show thattan f (z) = z (i.e., f is a branch of arctan z). Show that

f (z) =
∞∑

k=0

(−1)k
z2k+1

2k+ 1
, for |z| < 1

(Hint: see Exercise III. 3.19.)

Solution. Not available.

Exercise 12.Show that

secz= 1+
∞∑

k=1

E2k

(2k)!
z2k

for some constants E2,E4, · · · . These numbers are called Euler’s constants. What is the radius of conver-
gence of this series? Use the fact that1 = coszsecz to show that

E2n −
(

2n
2n− 2

)

E2n−2 +

(

2n
2n− 4

)

E2n−4 + · · · + (−1)n−1

(

2n
2

)

E2 + (−1)n = 0.

Evaluate E2,E4,E6,E8. (E10 = 50521and E12 = 2702765).

Solution. It is easily seen that

secz= 1+
∞∑

k=1

E2k

(2k)!
z2k, (for some E2,E4, . . .),
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Solution. Assumeγ is a closed and rectifiable curve in G andγ ∼ σ1. Sinceσ1(t) ≡ a andσ2(t) ≡ b, we
surely have thatσ1 andσ2 are closed and rectifiable curves in G. If we can show thatσ1 ∼ σ2, then we get
γ ∼ σ2, since∼ is an equivalence relation, that is:

γ ∼ σ1 and σ1 ∼ σ2⇒ γ ∼ σ2.

So, now we showσ1 ∼ σ2, that is, we have to find a continuous functionΓ : [0,1] × [0,1]→ G such that

Γ(s,0) = σ1(s) = a and Γ(s,1) = σ2(s) = b, for 0 ≤ s≤ 1

andΓ(0, t) = Γ(1, t) for 0 ≤ t ≤ 1. Let Γ(s, t) = tb + (1 − t)a. ClearlyΓ is a continuous function. (it is
constant with respect to s and a line with respect to t). In addition, it satisfiesΓ(s,0) = a ∀0 ≤ s ≤ 1 and
Γ(s,1) = b ∀0 ≤ s≤ 1 andΓ(0, t) = tb+ (1− t)a = Γ(1, t) ∀0 ≤ t ≤ 1. Soσ1 ∼ σ2.

Exercise 2. Show that if we remove the requirement “Γ(0, t) = Γ(1, t) for all t” from Definition6.1 then the
curveγ0(t) = e2πit , 0 ≤ t ≤ 1, is homotopic to the constant curveγ1(t) ≡ 1 in the region G= C − {0}.
Solution. Not available.

Exercise 3. 3. LetC = all rectifiable curves in G joining a to b and show that Definition 6.11 gives an
equivalence relation onC.

Solution. Not available.

Exercise 4. Let G= C − {0} and show that every closed curve in G is homotopic to a closed curve whose
trace is contained in{z : |z| = 1}.
Solution. Not available.

Exercise 5. Evaluate the integral
∫

γ

dz
z2+1 whereγ(θ) = 2| cos 2θ|eiθ for 0 ≤ θ ≤ 2π.

Solution. A sketch shows that the two zeros of z2
+ 1 (they are±i) are inside of the closed and rectifiable

curveγ (The region looks like a clover with four leaves ). Using partial fraction decompositions gives
∫

γ

dz
z2 + 1

=
1
2i

∫

γ

1
z− i

dz− 1
2i

∫

γ

1
z+ i

dz

= π
1

2πi

∫

γ

1
z− i

dz− π 1
2i

∫

γ

1
z+ i

dz

=
Def 4.2 p. 81

π (n(γ; i) − n(γ;−i))

= π·0 = 0,

since n(γ; i) = n(γ;−i) since i and−i are contained in the region generated byγ. Hence
∫

γ

dz
z2 + 1

= 0.

Exercise 6. Letγ(θ) = θeiθ for 0 ≤ θ ≤ 2π andγ(θ) = 4π − θ for 2π ≤ θ ≤ 4π. Evaluate
∫

γ

dz
z2+π2 .

Solution. A sketch reveals that the zero−πi is inside the region and the zeroπi is outside the region. Using
partial fraction decomposition yields

∫

γ

dz
z2 + π2

=
1

2πi

∫

γ

1
z− iπ

dz− 1
2πi

∫

γ

1
z+ iπ

dz

=
Def 4.2 p. 81

n(γ; iπ) − n(γ;−iπ) = 0− 1 = −1,

64

Preview from Notesale.co.uk

Page 68 of 166



since iπ is not contained in the region generated byγ, so n(γ; iπ) = 0 and−iπ is contained in the region, so
n(γ;−iπ) = 1. Hence,

∫

γ

dz
z2 + π2

= −1.

Exercise 7.Let f(z) = [(z− 1
2−i)· (z−1− 3

2 i)· (z−1− i
2)· (z− 3

2−i)]−1 and letγ be the polygon[0,2,2+2i,2i,0].
Find

∫

γ
f .

Solution. Not available.

Exercise 8. Let G= C − {a,b}, a , b, and letγ be the curve in the figure below.
(a) Show that n(γ; a) = n(γ; b) = 0.
(b) Convince yourself thatγ is not homotopic to zero. (Notice that the word is “convince”and not “prove”.
Can you prove it?) Notice that this example shows that it is possible to have a closed curveγ in a region
such that n(γ; z) = 0 for all z not in G withoutγ being homotopic to zero. That is, the converse to Corollary
6.10 is false.

Solution. Let γ be the path depicted on p. 96. We can write it as a sum of 6 paths.Two of them will
be closed and have a and b in their unbounded component. Therefore, two integrals will be zero and we
will have another 2 pair of non-closed paths. The first pair begins at the leftmost crossing pair and goes
around a in opposite direction. The second pair begins at themiddle crossing pair and goes around b in
opposite direction. They also meet at the rightmost crossing point. If we integrate over the path around a
is equivalent to evaluate

∫

γ1−γ2

1
z−a dz whereγ1(t) = a+ reit , 0 ≤ t ≤ π andγ2(t) = a+ reit , π ≤ t ≤ 2π for

some r> 0. It is easily seen that we have
∫

γ1

1
z− a

dz=
∫

γ2

1
z− a

dz= πi

and therefore n(γ; a) = 0 and similarly we obtain n(γ; b) = 0.

Exercise 9. Let G be a region and letγ0 andγ1 be two closed smooth curves in G. Supposeγ0 ∼ γ1, andΓ
satisfies (6.2). Also suppose thatγt(s) = Γ(s, t) is smooth for each t. If w∈ C −G define h(t) = n(γt; w) and
show that h: [0,1]→ Z is continuous.

Solution. Not available.

Exercise 10. Find all possible values of
∫

γ

dz
1+z2 , whereγ is any closed rectifiable curve inC not passing

through±i.

Solution. Letγ be a closed rectifiable curve inC not passing through±i. Using partial fraction decompo-
sition and the definition of the winding number we obtain

∫

γ

dz
1+ z2

=
1
2i

(∫

γ

1
z− 1

dz−
∫

γ

1
z+ i

dz

)

=
1
2i

(2πin(γ; i) − 2πin(γ;−i)) = π (n(γ; i) − n(γ;−i)) .

Exercise 11.Evaluate
∫

γ

ez−e−z

z4 dz whereγ is one of the curves depicted below. (Justify your answer.)

Solution. Using Corollary 5.9 p. 86 we have∀a ∈ G − {γ}
∫

γ

f (z)
(z− a)k+1

dz= 2πi f (k)(a)n(γ; a)
1
k!
,
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If z = a, then clearly f(n)(a) = 0 for m− (n− k) > 0 and f(n)(a) , 0 for m− (n− k) = 0. If k = 0 and m= n,
then f(m)(a) = f (n)(a) = m!g(a) , 0 since g(a) , 0 by assumption. Hence, f(n)(a) = 0 for n = 1,2, . . . ,m−1
and f(n)(a) , 0 for n = m.

Exercise 4. Suppose that f: G→ C is analytic and one-one; show that f′(z) , 0 for any z in G.

Solution. Assume f′(a) = 0 for some a∈ G. Then f(a) = α whereα is a constant. Define

F(z) = f (z) − α.

Then F(a) = f (a) − α = α − α = 0 and F′(a) = f ′(a) = 0 by assumption. Hence, F has a as a root of
multiplicity m≥ 2.
Then, we can use Theorem 7.4 p. 98 to argue that there is anε > 0 andδ > 0 such that for0 < |ξ − a| < δ,
the equation f(z) = ξ has exactly m simple roots in B(a; ε), since f is analytic in B(a; R) andα = f (a). Also
f (z) − α has a zero of order m≥ 2 at z= a.
Since f(z) = ξ has exactly m (our case m≥ 2) simple roots in B(a; ε), we can find at least two distinct
points z1, z2 ∈ B(a; ε) ⊂ G such that

f (z1) = ξ = f (z2)

contradicting that f is1− 1. So f′(z) , 0 for any z in G.

Exercise 5. Let X andΩ be metric spaces and suppose that f: X→ Ω, is one-one and onto. Show that f
is an open map iff f is a closed map. (A function f is a closed map if it takes closed sets onto closed sets.)

Solution. Not available.

Exercise 6. Let P : C→ R be defined by P(z) = Re z; show that P is an open map but is not a closed map.
(Hint: Consider the set F= {z : Im z= (Re z)−1 and Re z, 0}.)

Solution. Not available.

Exercise 7. Use Theorem 7.2 to give another proof of the Fundamental Theorem of Algebra.

Solution. Not available.

4.8 Goursat’s Theorem

No exercises are assigned in this section.
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Chapter 5

Singularities

5.1 Classification of singularities

Exercise 1. Each of the following functions f has an isolated singularity at z= 0. Determine its nature; if
it is a removable singularity define f(0) so that f is analytic at z= 0; if it is a pole find the singular part; if
it is an essential singularity determine f({z : 0 < |z| < δ}) for arbitrarily small values ofδ.
a)

f (z) =
sinz

z
;

b)

f (z) =
cosz

z
;

c)

f (z) =
cosz− 1

z
;

d)
f (z) = exp(z−1);

e)

f (z) =
log(z+ 1)

z2
;

f)

f (z) =
cos(z−1)

z−1
;

g)

f (z) =
z2
+ 1

z(z− 1)
;

h)
f (z) = (1− ez)−1;

i)

f (z) = zsin
1
z

;
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Chapter 6

The Maximum Modulus Theorem

6.1 The Maximum Principle

Exercise 1. Prove the following Minimum Principle. If f is a non-constant analytic function on a bounded
open set G and is continuous on G−, then either f has a zero in G or| f | assumes its minimum value on∂G.
(See Exercise IV. 3.6.)

Solution. Since f∈ C(Ḡ) we have| f | ∈ C(Ḡ). Hence∃ a ∈ Ḡ such that| f (a)| ≤ | f (z)| ∀z ∈ Ḡ.
If a ∈ ∂G, then| f | assumes its minimum value on∂G and we are done. Otherwise, if a< ∂G, then a∈ G
and we can write G=

⋃

Ai where Ai are the components of G, that is a∈ Ai for some i. But each Ai is a
region, so we can use Exercise IV 3.6 which yields either f(a) = 0 or f is constant. But f was assumed
to be non-constant, so f has to have a zero in G. Therefore, either f has a zero in G or| f | assumes its
minimum value on∂G.

Exercise 2. Let G be a bounded region and suppose f is continuous on G− and analytic on G. Show that
if there is a constant c≥ 0 such that| f (z)| = c for all z on the boundary of G then either f is a constant
function or f has a zero in G.

Solution. Assume there is a constant c≥ 0 such that| f (z)| = c for all z ∈ ∂G. According to the Maximum
Modulus Theorem (Version 2), we get

max{| f (z)| : z ∈ Ḡ} = max{| f (z)| : z ∈ ∂G} = c.

So

| f (z)| ≤ c, ∀z ∈ Ḡ. (6.1)

Since f∈ C(G) which implies| f | ∈ C(Ḡ) and hence there exists an a∈ G such that

| f (a)| ≤ | f (z)| ≤
(6.1)

c,

then by Exercise IV 3.6 either f is constant of f has a zero in G.

Exercise 3. (a) Let f be entire and non-constant. For any positive real number c show that the closure of
{z : | f (z)| < c} is the set{z : | f (z)| ≤ c}.
(b) Let p be a polynomial and show that each component of{z : |p(z)| < c} contains a zero of p. (Hint: Use
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Exercise 2.)
(c) If p is a polynomial and c> 0 show that{z : |p(z)| = c} is the union of a finite number of closed paths.
Discuss the behavior of these paths as c→ ∞.

Solution. Not available.

Exercise 4. Let 0 < r < R and put A= {z : r ≤ |z| ≤ R}. Show that there is a positive numberε > 0 such
that for each polynomial p,

sup{|p(z) − z−1| : z ∈ A} ≥ ε
This says that z−1 is not the uniform limit of polynomials on A.

Solution. Not available.

Exercise 5. Let f be analytic onB̄(0;R) with | f (z)| ≤ M for |z| ≤ R and| f (0)| = a > 0. Show that the
number of zeros of f in B(0; 1

3R) is less than or equal to1
log 2 log

(
M
a

)

. Hint: If z1, . . . , zn are the zeros of f

in B(0; 1
3R); consider the function

g(z) = f (z)





n∏

k=1

(

1− z
zk

)



−1

,

and note that g(0) = f (0). (Notation:
∏n

k=1 ak = a1a2 . . . an.)

Solution. Not available.

Exercise 6. Suppose that both f and g are analytic onB̄(0;R) with | f (z)| = |g(z)| for |z| = R. Show that if
neither f nor g vanishes in B(0;R) then there is a constantλ, |λ| = 1, such that f= λg.

Solution. Not available.

Exercise 7. Let f be analytic in the disk B(0;R) and for0 ≤ r < R define A(r) = max{Re f(z) : |z| = r}.
Show that unless f is a constant, A(r) is a strictly increasing function of r.

Solution. Not available.

Exercise 8. Suppose G is a region, f: G→ C is analytic, and M is a constant such that whenever z is on
∂∞G and{zn} is a sequence in G with z= lim zn we havelim sup| f (zn)| ≤ M. Show that| f (z)| ≤ M, for
each z in G.

Solution. We need to show
lim sup

z→a
| f (z)| ≤ M ∀u ∈ ∂∞G.

Then we can use the Maximum Modulus Theorem (Version 3). Instead of showing that

lim sup| f (zn)| ≤ M ⇒ lim sup
z→a

| f (z)| ≤ M,

we show the contrapositive, that is

lim sup
z→a

| f (z)| > M ⇒ lim sup| f (zn)| > M.

So assumelim supz→a | f (z)| > M. But this implieslim supz→a | f (zn)| > M since zn → z as z→ ∞, that is zn
gets arbitrarily close to z and since f is analytic, that is continuous, we have f(zn) gets arbitrarily close to
f (z).
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Exercise 6. Prove Hardy’s Theorem: If f is analytic on̄B(0;R) and not constant then

I (r) =
1
2π

∫ 2π

0
| f (reiθ)| dθ

is strictly increasing andlog I (r) is a convex function oflog r. Hint: If 0 < r1 < r < r2 find a con-
tinuous functionϕ : [0,2π] → C such thatϕ(θ) f (reiθ) = | f (reiθ)| and consider the function F(z) =
∫ 2π

0
f (zeiθ)ϕ(θ) dθ. (Note that r is fixed, soϕ may depend on r.)

Solution. Not available.

Exercise 7. Let f be analytic in ann(0;R1,R2) and not identically zero; define

I2(r) =
1
2π

∫ 2π

0
| f (reiθ)|2 dθ.

Show thatlog I2(r) is a convex function oflog r, R1 < r < R2.

Solution. Not available.

6.4 The Phragmén-Lindelöf Theorem

Exercise 1. In the statement of the Phragmén-Lindelöf Theorem, the requirement that G be simply con-
nected is not necessary. Extend Theorem 4.1 to regions G withthe property that for each z in∂∞G there is
a sphere V inC∞ centered at z such that V∩G is simply connected. Give some examples of regions that
are not simply connected but have this property and some which don’t.

Solution. Not available.

Exercise 2. In Theorem 4.1 suppose there are bounded analytic functionsϕ1, ϕ2, . . . , ϕn on G that never
vanish and∂∞G = A∪ B1 ∪ . . . ∪ Bn such that condition (a) is satisfied and condition (b) is alsosatisfied
for eachϕk and Bk. Prove that| f (z)| ≤ M for all z in G.

Solution. We haveϕ1, . . . , ϕn ∈ A(G), bounded andϕk . 0 by assumption. Hence,|ϕk(z)| ≤ κk ∀ z in G for
each k= 1, . . . ,n. Further a) for every a in A,lim supz→a | f (z)| ≤ M and b) for every b in Bk andηk > 0,
lim supz→b | f (z)||ϕk(z)|ηk ≤ M ∀ k = 1, . . . ,n.
Also because G is simply connected, there is an analytic branch of logϕk(z) on G for each k= 1, . . . ,n
(Corollary IV 6.17). Hence, gk(z) = exp{ηk logϕk(z)} is an analytic branch ofϕk(z)ηk for ηk > 0 and
|gk(z)| = |ϕk(z)|ηk ∀ k = 1, . . . ,n. Define F: G→ C by

F(z) = f (z)
n∏

k=1

gk(z)κ
−ηk

k ;

then F is analytic on G and

|F(z)| ≤ | f (z)|
n∏

k=1

|ϕk(z)|ηkκ
−ηk

k ≤
|ϕk(z)|≤κk ∀k

| f (z)|
n∏

k=1

κ
ηk

k κ
−ηk

k |ϕk(z)| = | f (z)| ∀z ∈ G.

Hence,

lim sup
z→a

| f (z)| =
(a),(b)






M, a ∈ A

Mκ
−ηk

k , a ∈ Bk ∀k
.
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by definition. Then, clearly∃δ > 0 such thatlimr→0+ sup{| f (z)| : z ∈ G ∩ B(a; r)} > M + δ. Let {zn} be a
sequence withlimn→∞ = a and let rn = 2|zn − a|. Obviously, we havelimn→∞ rn = 0. Next, consider the
sequenceαn = sup{| f (z)| : z ∈ F ∩ B(a; rn)}. Thenlimn→∞ αn > M + δ. In addition,{αn} is a nonincreasing
sequence, thereforelimn→∞ αn > M + δ impliesαn > M + δ ∀n. Thus,∃ yn ∈ G ∩ B(a; rn) such that
| f (yn)| > M + δ. Takinglim sup in this inequality yields

lim sup
n→∞

| f (yn)| ≥ M + δ,

that is
lim sup

n→∞
| f (yn)| ≥ M

wherelimn→∞ yn = a, which gives “not (6.5)”. Hence (6.5) implies (6.6).

Exercise 5. Let f : G → C be analytic and suppose that G is bounded. Fix z0 in ∂G and suppose that
lim supz→w | f (z)| ≤ M for w in ∂G, w , z0. Show that iflimz→z0 |z− z0|ε | f (z)| = 0 for everyε > 0 then
| f (z)| ≤ M for every z in∂G. (Hint: If a < G, considerϕ(z) = (z− z0)(z− a)−1.)

Solution. Not available.

Exercise 6. Let G= {z : Re z> 0} and let f : G → C be an analytic function withlim supz→w | f (z)| ≤ M
for w in ∂G, and also suppose that for everyε > 0,

lim
r→∞

sup{exp(−ε/r)| f (reiθ)| : |θ| < 1
2
π} = 0.

Show that| f (z)| ≤ M for all z in G.

Solution. Not available.

Exercise 7. Let G = {z : Re z> 0} and let f : G → C be analytic such that f(1) = 0 and such that
lim supz→w | f (z)| ≤ M for w in ∂G. Also, suppose that for everyδ, 0 < δ < 1, there is a constant P such that

| f (z)| ≤ Pexp(|z|1−δ).

Prove that

| f (z)| ≤ M

[

(1− x)2
+ y2

(1+ x)2 + y2

] 1
2

.

Hint: Consider f(z)
(

1+z
1−z

)

.

Solution. Not available.
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We also have
|h(z)| ≤ 1 ∀z ∈ D

since h: D→ D. Thus, the hypothesis of Schwarz’s Lemma are satisfied, andhence, we get

|h′(0)| ≤ 1.

We have

h′(z) =

[

g( f (g−1(z)))
]′
= g′( f (g−1(z))) f ′(g−1(z))

(

g−1(z)
)′

= g′( f (g−1(z))) f ′(g−1(z))
1

g′(g−1(z))

where the last step follows from Proposition 2.20 provided g′(g−1(z)) , 0. So

h′(0) = g′( f (g−1(0))) f ′(g−1(0))
1

g′(g−1(0))

= g′( f (a)) f ′(a)
1

g′(a)
= g′(a) f ′(a)

1
g′(a)

= f ′(a)

(g′(a) > 0 by assumption). Therefore
|h′(0)| = | f ′(a)| ≤ 1.

Thus, we have shown that
| f ′(a)| ≤ 1.

Exercise 6. Let G1 and G2 be simply connected regions neither of which is the whole plane. Let f be a
one-one analytic mapping of G1 onto G2. Let a∈ G1 and putα = f (a). Prove that for any one-one analytic
map h of G1 into G2 with h(a) = α it follows that|h′(a)| ≤ | f ′(a)|. Suppose h is not assumed to be one-one;
what can be said?

Solution. Define the function F(z) = f −1(h(z)). This is well-defined since f: G1
1−1−−−−−−→
onto

G2 and h :

G1
1−1−−−−−−→ G2. Clearly F(z) is analytic since f and h are analytic, F(z) is one-one and F: G1 → G1 by

construction. We have
F(a) = f −1(h(a)) = f −1(α) = a.

Thus by Exercise 5, we get
|F′(a)| ≤ 1.

We have

F′(z) =
(

f −1(h(z))
)′
= f ′(h(z))h′(z) =

1
f ′( f −1(h(z)))

h′(z)

where the last step follows by Proposition 2.20 provided f′( f −1(h(z))) , 0. So

F′(a) =
1

f ′( f −1(h(a)))
h′(a) =

h′(a)
f ′( f −1(α))

=
h′(a)
f ′(a)

which is well-defines since f′(a) , 0 by assumption (f is one-one). Since

|F′(a)| = |h
′(a)|
| f ′(a)| ≤ 1
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iff A has a limit point in G.
(d) Let a∈ G andJ = J({a}). Show thatJ is a maximal ideal.
(e) Show that every maximal ideal in H(G) is a prime ideal.
(f) Give an example of an ideal which is not a prime ideal.

Solution. Not available.

Exercise 12. Find an entire function f such that f(n + in) = 0 for every integer n (positive, negative or
zero). Give the most elementary example possible (i.e., choose the pn to be as small as possible).

Solution. Not available.

Exercise 13.Find an entire function f such that f(m+ in) = 0 for all possible integers m,n. Find the most
elementary solution possible.

Solution. Not available.

7.6 Factorization of the sine function

Exercise 1. Show thatcosπz=
∏∞

n=1

[

1− 4z2

(2n−1)2

]

.

Solution. We know by the double-angle identity of sinesin(2z) = 2 sin(z) cos(z) (this is proved easily by
using the definition) orsin(2πz) = 2 sin(πz) cos(πz). Since, we knowsin(πz) = πz

∏∞
n=1

(

1− z2

n2

)

, we obtain

sin(2πz) = 2 sin(πz) cos(πz)

⇐⇒ 2πz
∞∏

n=1

(

1− 4z2

n2

)

= 2πz
∞∏

n=1

(

1− z2

n2

)

cos(πz)

⇐⇒ 2πz
∞∏

m=1

(

1− 4z2

(2m)2

) ∞∏

m=1

(

1− 4z2

(2m− 1)2

)

= 2πz
∞∏

n=1

(

1− z2

n2

)

cos(πz)

where the last statement follows by splitting the product into a product of the even and odd terms (rear-
rangement of the terms is allowed). Hence

2πz
∞∏

n=1

(

1− 4z2

(2n)2

) ∞∏

n=1

(

1− 4z2

(2n− 1)2

)

= 2πz
∞∏

n=1

(

1− z2

n2

)

cos(πz)

⇐⇒ 2πz
∞∏

n=1

(

1− z2

n2

) ∞∏

n=1

(

1− 4z2

(2n− 1)2

)

= 2πz
∞∏

n=1

(

1− z2

n2

)

cos(πz).

Thus,

cos(πz) =
∞∏

n=1

(

1− 4z2

(2n− 1)2

)

.

Exercise 2. Find a factorization forsinhz andcoshz.
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Thus,

Γ(z) =
∞∑

n=0

(−1)n

n!(z+ n)
+

∫ ∞

1
e−ttz−1 dt (7.12)

Claim 1: Γ(z) given by (7.12) is the analytic continuation of (7.11), that isΓ(z) given by (7.12) is defined
for all z ∈ C − {0,−1,−2, . . .}.
Proof of Claim 1: We know from the book thatΨ(z) is analytic for Re(z) > 0.
Claim 2:Ψ(z) is analytic for Re(z) ≤ 0. ThusΨ(z) is analytic onC.
Proof of Claim 2: Assume Re(z) ≤ 0. Then

|tz−1| = tRe(z)−1 ≤
t∈[1,∞),Re(z)≤0

t−1.

But since e−
1
2 ttRe(z)−1 → 0 as t→ ∞, there exists a constant C> 0 such that tRe(z)−1 ≤ Ce

1
2 when t≥ 1.

Hence, we have
|e−ttz−1| ≤ |e−t |· |tz−1| = e−ttRe(z)−1 ≤ e−tCe

1
2 t
= Ce−

1
2 t

and therefore Ce−
1
2 t is integrable on(1,∞). By Fubini’s Theorem for any{γ} ⊂ G = {z : Re(z) ≤ 0},

∫

γ

∫ ∞

1
e−ttz−1 dt dz=

∫ ∞

1

∫

γ

e−ttz−1 dz dt= 0

which implies
∫ ∞

1
e−ttz−1 dt ∈ H(G).

In summary,

Ψ(z) =
∫ ∞

1
e−ttz−1 dt ∈ H(C).

Thus, Claim 2 is proved.
It remains to show that

Φ(z) =
∞∑

n=0

(−1)n

n!(z+ n)

is analytic onC − {0,−1,−2, . . .}. Note thatΦ(z) is uniformly and absolutely convergent as a series in any
closed domain which contains none of the points0,−1,−2, . . . and thus provides the analytic continuation
ofΦ(z). Since

∞∑

n=0

(−1)n

n!(z+ n)
+

∫ ∞

1
e−ttz−1 dt

is analytic and we know (Theorem 7.15 p. 180)

Γ(z) =
∫ ∞

0
e−ttz−1 dt

for Re(z) > 0, we get

Γ(z) =
∞∑

n=0

(−1)n

n!(z+ n)
+

∫ ∞

1
e−ttz−1 dt

is the analytic continuation of (7.11) for z ∈ C − {0,−1,−2, . . .}.
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8.3 Mittag-Leffler’s Theorem

Exercise 1. Let G be a region and let{an} and {bm} be two sequences of distinct points in G without limit
points in G such that an an , bm for all n,m. Let Sn(z) be a singular part at an and let pm be a positive
integer. Show that there is a meromorphic function f on G whose only poles and zeros are{an} and {bm}
respectively, the singular part at z= an is Sn(z), and z= bm is a zero of multiplicity pm.

Solution. Let G be a region and let{bm} be a sequence of distinct points in G with no limit point in G;
and let{pm} be a sequence of integers. By Theorem 5.15 p.170 there is an analytic function g defined on G
whose only zeros are at the points bm; furthermore, bm is a zero of g of multiplicity pm.
Since g∈ H(g) and{an} ∈ G, g has a Taylor series in a neighborhood B(an; Rn) of each an, that is

gn(z) =
∞∑

k=0

αk(z− an)k ∈ B(an; Rn)

whereαk =
1
k! g

(k)(an). Goal: Try to use this series to create a singular part rn(z) at an such that rn(z)gn(z) =
sn(z) or

rn(z)
∞∑

k=0

αk(z− an)k
=

mn∑

j=1

A jn

(z− an) j
⇐⇒

mn∑

j=1

A jn

(z− an) j
=

∞∑

k=0

αkrn(z)(z− an)k.

Claim:

rn(z) =
mn∑

j=1

Bjk(z− an)− j−k (8.1)

works.
Proof of the claim:

∞∑

k=0

αkrn(z)(z− an)k
=

∞∑

k=0

αk

mn∑

j=1

Bjk(z− an)− j−k(z− an)k

=

∞∑

k=0

αk

mn∑

j=1

Bjk(z− an)− j

=

mn∑

j=1

(z− an)− j
∞∑

k=0

αkBjk =

mn∑

j=1

A jn

(z− an) j

where the last step follows by choosing
∞∑

k=0

αkBjk = A jn.

Since G is a region, G is open. Let{an} be a sequence of distinct points without a limit point in G andsuch
that an , bm for all n,m. Let{rn(z)} be the sequence of rational functions given by

rn(z) =
mn∑

j=1

Bjk

(z− an) j+k

(see (8.1)). By Mittag-Leffler’s Theorem, there is a meromorphic function h on G whose poles are exactly
the points{an} and such that the singular part of h at an is rn(z).
Set f= g·h. Then by construction f is the meromorphic function on G whose only poles and zeros are{an}
and{bm} respectively, the singular part at z= an is Sn(z), and z= bm is a zero of multiplicity pm. (Note that
the zeros do not cancel the poles since by assumption an , bm ∀ n,m).
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Solution. Not available.

Exercise 4. Let G be a simply connected region and letΓ be its closure inC∞; ∂∞G = Γ − G. Suppose
there is a homeomorphismϕ of Γ onto D−(D = {z : |z| < 1}) such thatϕ is analytic on G.
(a) Show thatϕ(G) = D andϕ(∂∞G) = ∂D.
(b) Show that if f: ∂∞G→ R is a continuous function then there is a continuous functionu : Γ → R such
that u(z) = f (z) for z in∂∞G and u is harmonic in G.
(c) Suppose that the function f in part (b) is not assumed to becontinuous at∞. Show that there is a
continuous function u: G− → R such that u(z) = f (z) for z in∂G and u is harmonic in G (see Exercise 2).

Solution. Not available.

Exercise 5. Let G be an open set, a∈ G, and G0 = G − {a}. Suppose that u is a harmonic function on G0

such thatlimz→a u(z) exists and is equal to A. Show that if U: G → R is defined by U(z) = u(z) for z , a
and U(a) = A then U is harmonic on G.

Solution. Not available.

Exercise 6. Let f : {z : Re z= 0} → R be a bounded continuous function and define u: {z : Re z> 0} → R
by

u(x+ iy) =
1
π

∫ ∞

−∞

x f(it)
x2 + (y− t)2

dt.

Show that u is a bounded harmonic function on the right half plane such that for c inR, f (ic) = limz→ic u(z).

Solution. Not available.

Exercise 7. Let D= {z : |z| < l} and suppose f: ∂D → R is continuous except for a jump discontinuity at
z= 1. Define u: D → R̄ by (2.5). Show that u is harmonic. Let v be a harmonic conjugate of u. What can
you say about the behavior of v(r) as r→ 1−? What about v(reiθ) as r→ 1− andθ → 0?

Solution. Not available.

10.3 Subharmonic and superharmonic functions

Exercise 1. Which of the following functions are subharmonic? superharmonic? harmonic? neither
subharmonic nor superharmonic? (a)ϕ(x, y) = x2

+ y2; (b) ϕ(x, y) = x2 − y2; (c) ϕ(x, y) = x2
+ y; (d)

ϕ(x, y) = x2 − y; (e)ϕ(x, y) = x+ y2; (f) ϕ(x, y) = x− y2.

Solution. Note that
∫ π

−π sinθ dθ = 0,
∫ π

−π cosθ dθ = 0,
∫ π

−π sin2 θ dθ = π and
∫ π

−π cos2 θ dθ = π. For all
a = (α, β) ∈ C and any r> 0 we have
a)

ϕ(a+ reiθ) = ϕ(α + r cosθ, β + r sinθ) = (α + r cosθ)2
+ (β + r sinθ)2

= α2
+ 2αr cosθ + r2 cos2 θ + β2

+ 2βr sinθ + r2 sin2 θ

= α2
+ β2
+ 2αr cosθ + 2βr sinθ + r2.

Thus

1
2π

∫ π

−π
ϕ(a+ reiθ) dθ = α2

+ β2
+
αr
π

∫ π

−π
cosθ dθ

︸         ︷︷         ︸

=0

+
βr
π

∫ π

−π
sinθ dθ

︸        ︷︷        ︸

=0

+r2

= α2
+ β2
+ r2 ≥ α2

+ β2
= ϕ(a).
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Thus

1
2π

∫ π

−π
ϕ(a+ reiθ) dθ = α + β2

+
r

2π

∫ π

−π
cosθ dθ

︸         ︷︷         ︸

=0

+
βr
π

∫ π

−π
sinθ dθ

︸        ︷︷        ︸

=0

+
r2

2π

∫ π

−π
sin2 θ dθ

︸         ︷︷         ︸

=π

= α + β2
+

r2

2
≥ α + β2

= ϕ(a).

Hence,ϕ ∈ Subhar(G).
f)

ϕ(a+ reiθ) = ϕ(α + r cosθ, β + r sinθ) = (α + r cosθ) − (β + r sinθ)2

= α + r cosθ − β2 − 2βr sinθ − r2 sin2 θ.

Thus

1
2π

∫ π

−π
ϕ(a+ reiθ) dθ = α − β2

+
r

2π

∫ π

−π
cosθ dθ

︸         ︷︷         ︸

=0

−βr
π

∫ π

−π
sinθ dθ

︸        ︷︷        ︸

=0

− r2

2π

∫ π

−π
sin2 θ dθ

︸         ︷︷         ︸

=π

= α − β2 − r2

2
≤ α − β2

= ϕ(a).

Hence,ϕ ∈ Superhar(G).

Exercise 2. Let Subhar(G) and Superhar(G) denote, respectively, the sets of subharmonic and superhar-
monic functions on G.
(a) Show that Subhar(G) and Superhar(G) are closed subsets of C(G;R).
(b) Does a version of Harnack’s Theorem hold for subharmonicand superharmonic functions?

Solution. Not available.

Exercise 3. (This exercise is difficult.) If G is a region and if f: ∂∞G → R is a continuous function let
uf be the Perron Function associated with f . This defines a map T: (∂∞G;R) → Har(G) by T( f ) = uf .
Prove:
(a) T is linear (i.e., T(a1 f1 + a2 f2) = a1T( f1) + a2T( f2)).
(b) T is positive (i.e., if f(a) ≥ 0 for all a in ∂∞G then T( f )(z) ≥ 0 for all z in G).
(c) T is continuous. Moreover, if{ fn} is a sequence in C(∂∞G;R) such that fn→ f uniformly then T( fn)→
T( f ) uniformly on G.
(d) If the Dirichlet Problem can be solved for G then T is one-one. Is the converse true?

Solution. Not available.

Exercise 4. In the hypothesis of Theorem 3.11, suppose only that f is a bounded function on∂∞G; prove
that the conclusion remains valid. (This is useful if G is an unbounded region and g is a bounded continuous
function on∂G. If we define f: ∂∞G → R by f(z) = g(z) for z in ∂G and f(∞) = 0 then the conclusion
of Theorem 3.11 remains valid. Of course there is no reason toexpect that the harmonic function will have
predictable behavior near∞ — we could have assigned any value to f(∞). However, the behavior near
points of∂G can be studied with hope of success.)

Solution. Not available.

Exercise 5. Show that the requirement that G1 is bounded in Corollary 3.5 is necessary.
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11.3 Hadamard Factorization Theorem

Exercise 1. Let f be analytic in a region G and suppose that f is not identically zero. Let G0 = G − {z :
f (z) = 0} and define h: G0→ R by h(z) = log | f (z)|. Show that∂h

∂x − i ∂h
∂y =

f ′

f on G0.

Solution. Let f be analytic in a region G and suppose that f is not identically zero. Let G0 = G − {z :
f (z) = 0}, then h: G0→ R given by h(z) = log | f (z)| is well defined as well asf

′

f is well defined on G0.
Let f = u(x, y) + iv(x, y) = u + iv. Since f is analytic, the Cauchy-Riemann (C-R) equationsux = vy and
uy = −vx are satisfied. We have by p. 41 Equation 2.22 and 2.23

f ′ = ux + ivx and f′ = −iuy + vy

and thus

2 f ′ = ux + ivx − iuy + vy

implies

f ′ =
1
2

(

ux + ivx − iuy + vy

)

=
(C-R)

1
2

(

ux − iuy − iuy + ux

)

=
1
2

(

2ux − 2iuy

)

= ux − iuy.

Therefore,

f ′

f
=

ux − iuy

u+ iv
. (11.6)

Next, we calculate∂h
∂x = hx and ∂h

∂y = hy where h(z) = log | f (z)| = 1
2 log(u2

+ v2). Using the chain rule, we
get

hx = huux + hvvx =
u

u2 + v2
ux +

v
u2 + v2

vx

and
hy = huuy + hvvy =

u
u2 + v2

uy +
v

u2 + v2
vy

and hence

∂h
∂x
− i

∂h
∂y

= hx − ihy

=
u

u2 + v2
ux +

v
u2 + v2

vx − i
u

u2 + v2
uy − i

v
u2 + v2

vy

=
u

u2 + v2
(ux − iuy) +

v
u2 + v2

(vx − ivy)

=
(C-R)

u
u2 + v2

(ux − iuy) +
v

u2 + v2
(−uy − iux)

=
u

u2 + v2
(ux − iuy) −

iv
u2 + v2

(ux − iuy)

=
u− iv
u2 + v2

(ux − iuy)

=
u− iv

(u− iv)(u+ iv)
(ux − iuy)

=
ux − iuy

u+ iv
.
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