1.3 The complex plane

Exercise 1. Prove (3.4) and give necessary angf@ient conditions for equality.

Solution. Let z and w be complex numbers. Then

2=l = llz=w+w —[w|
< llz=w+ W = [wil
= llz—w
= lz-w

Notice that|Z and|w] is the distance from z and w, respectively, to the origin @fzit- w| is the distance
between z and w. Considering the construction of the imptiadgle, in order to guarantee equality, it is
necessary and gfcient that

12— Wil = [z— W
(12 - W)? = |z— wi?
(12 - Wi)? = |22 — 2Re(zw) + [w?

2° - 2|z||w|+|w|2 |2 — 2Re(zW) + [wf? \)\(

|l2v = Re(zw)

Equivalently, this isw > 0. MANN wwegetw- W = w2 -2 >0ifw % 0 If
t== () W g -”;é :h @é
Exeruse 2 tf% ity occurg ( "an ifz > Ofor any integerskand tl <k, I <n,

Orﬂn Not avallg]age

Exeruse 3.Letae d c> 0 be fixed. Describe the set of points z satisfying

lz—al —|z+al = 2c

11011

for every possible choice of a and c. Now let a be any complmbeu and, using a rotation of the plane,
describe the locus of points satisfying the above equation.

Solution. Not available.

1.4 Polar representation and roots of complex numbers

Exercise 1. Find the sixth roots of unity.

Solution. Start with £ = 1 and z= rcis(), therefore fcis(69) = 1. Hence r= 1andd = 2= with k €
{-3,-2,-1,0,1, 2}. The following table gives a list of principle values of angents and the corresponding
value of the root of the equatiofi z 1.
6=0 =1
61 = g,, 71 = Cis(%)
=5 2=Ccis(3)
Oz3=m Z3 = CiS(ﬂ) =-1
Oy =2 Z4 = cis(%)
0s = = = cis(3)



It remains to verify that fg is uniformly continuous, since kave already shown that fg is bounded. We
have

p(F(¥)a(x), f(y)ay)) F(X)a(x) — f(y)gy)l =

(909 — f(¥)aly) + F(X)ay) — F(¥)ay)l
[F()9(x) = F(¥)aly)l + [T (¥)aly) - f(y)ay)l
[T 19(x) — gl + [T () 1g(y) — gy

Mie + Maey,

ININ A

whenever ¢, y) < min(d1, 52). So choosing = Mie; + Mae; andd = min(dy, 52), we havede > 036 > 0
such that
1F(X)a(x) - f(Y)aW)I < €

whenever ¢, y) < 6. Thus, fg is uniformly continuous and bounded.

Exercise 4. Is the composition of two uniformly continuous (Lipschitzjctions again uniformly continu-
ous (Lipschitz)?

Solution. Not available. \(

Exercise 5. Suppose f X — Q is uniformly continuous; sh W Cauchy sequence in X then
{f(xn)} is a Cauchy sequence §n. Is this still true |f at f is continuous?offr or give

a counterexample.)

Solution. Assume f X — Q fomgtmu us h ) eveey> 0 there exist$ > 0 such that
p(f(X), f(y) < eif dﬁm Jisa Ca |n X, we have, for ewgry 0 there exists
NeNsu <elforall

en by the uniform continuity, we have that
( Xn), T(Xm)) < € vn,m> N

whenever ¢, meS which tells us thatf(x,)} is a Cauchy sequence p.

If f is continuous, the statement is riotie. Here is a counterexample: Le(X) = ;1< which is continuous
on (0,1). The sequencenx_ % is apparently convergent and therefore a Cauchy sequencé iBut
{f(x))} = f( )} = {n} is obviously not Cauchy. Note tha{x) = is not uniformly continuous of®, 1).
To see that p|ck 1 Then there is né > 0 such thaf f(x) — f(y)| < 1whenevefx-y| < §. Assume there
exists such @& WLOG assumé < 1 since the interva(0, 1) is considered. Let ¥ x+6/2 and set x= §/2,

then
1] _y-x 0/2 1

109~ 100 = |5 - = 5 = 755 =5 >

that is no matter what < 1 we choose, we always obtdif(x) — f(y)| > 1. Therefore {x) = ;1( cannot be
uniformly continuous.

Exercise 6. Recall the definition of a dense set (1.14). SupposeQhata complete metric space and that
f:(D,d) - (Q;p) is uniformly continuous, where D is dense(i d). Use Exercise 5 to show that there
is a uniformly continuous function:gX — Q with g(x) = f(x) for every xin D.

Solution. Not available.

Exercise 7. Let G be an open subset @fand let P be a polygon in G from a to b. Use Theorems 5.15
and 5.17 to show that there is a polygondQG from a to b which is composed of line segments which are
parallel to either the real or imaginary axes.
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Solution. Not available.
Exercise 8. Use Lebesgue’s Covering Lemma (4.8) to give another probiebrem 5.15.

Solution. Suppose f. X — Q is continuous and X is compact. To show f is uniformly comtirsu Let
€ > 0. Since f is continuous, we have for aleXX there is ajx > 0 such thajp(f(x), f(y)) < €/2 whenever
d(x,y) < 6x. In addition,

X = U B(X; 6)

xeX

is an open cover of X. Since X is by assumption compact (itsis s¢quentially compact as stated in
Theorem 4.9 p. 22), we can use Lebesgue’s Covering Lemma 28tp obtain & > 0 such that xe X
implies that Bx, §) c B(z 6,) for some = X. More precisely, %/ € B(z §,) and therefore

€

p(f(X), £(2) < p(f(x), 1) + p(f(2). f(y)) < g to =€

and hence f is uniformly continuous on X.

the property that for every > 0 and for any points a, b in X, there are points in X with z = a,
Z, = b, and dz, z) < e for 1 < k < n. Then(X, d) is connected. (Hirﬁ@ﬂw 5.17.)

Solution. Not available. .

Exercise 10.Let f and g be contln ﬁrdm 6% p) and let D be a dense subset of X.

Prove that if f{x) = g(x) fo g Us hi at the function g obtained in Exercise 6
is unique. 6

t \bL bl 2
%W\@ ilable.
2.6 Unlforyc%%rgence

Exercise 1. Let{f,} be a sequence of uniformly continuous functions f(étm) into (Q, p) and suppose
that f = u— —Ilim f, exists. Prove that f is uniformly continuous. If eaghisfa Lipschitz function with
constant M andsupM,, < o, show that f is a Lipschitz function. $tipM, = o, show that f may fail to
be Lipschitz.

Exercise 9. Prove the following converse to Exercise 2.5. Supisd) is a compa:t metric space having

Solution. Not available.
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Chapter 3

Elementary Properties and Examples of
Analytic Functions

3.1 Power series \(
| ) cO M
Exercise 1. Prove Proposition 1.5. a\e

Solution. Not available. ﬁ tes
Exercise 2. Give thiigﬁ f of Propr‘md&— 6

Solu'uon ila

( \,s 3. Prov d& ) < I|m supa,+lim supb, andlim inf(a,+b,) > liminf a,+liminf b,
for bounded se | numbexg and{b,}.

Solution. Letr > limsup,_,., @ (we know there are only finitely many by definition) and letlsn sup,_,,
(same here, there are only finitely many by definition). Thersr> a, + b, for all but finitely many n’s.
This however, implies that

r+ s> limsup(a, + by).

nN—oo

Since this holds for any ¥ limsup,_, ., & and s> limsup,_,, b,, we have

limsup(a, + b,) < limsupa, + lim supby,.

n—oo N—oo N—oo

Letr < liminf . a, (we know there are only finitely many by definition) and let minf,_., (same
here, there are only finitely many by definition). Then s < a, + by for all but finitely many n’s. This
however, implies that

r+s< Iimigf(an + bn).

Since this holds for any « liminf,,_., a, and s< liminf,_., by, we have

Iirnn inf(an + by) > IiLn inf a, + Ii|;n inf by.

Exercise 4. Show thatiminf a, < lim supa, for any sequence iR.
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Solution. Let m = liminf,.. a, and b = inf{an, 8y;1,...}. Let M = limsup,_., ar. Take any s> M.
Then, by definition of thém sup,_,., a, = M, we obtain that g < s for infinitely many n’s which implies
that by, < s for all n and hencéimsup,_,., b, = m < s. This holds for all s> M. But the infimum of all
these s’s is M. Therefore m M which is

I|m inf a, < lim supa,.

N—oo
Exercise 5. If {a,} is a convergent sequencelinand a= lim a,, show that a= liminf a, = lim supa,.
Solution. Suppose that,} is a convergent sequencelrwith limit a = lim,_,., a,. Then by definition, we
have:Ye > 0 AN > O such thatvn > N, we havéa, — a < ¢, thatis a— € < a, < a+ e. This means that all
but finitely many gls are < a+ e and> a — e. This shows that

a—-e<liminfa,<a+e
nN—oo

N——
=m

and
a—e<limsupa, <a+e.

nN—oo

—_————

=M K
By the previous Exercise 4, we also have O -u
a-e<m él\s Xe C

Hence, No 20 6
SII’]CEE_> O| ra Qotam 1
WA et

eN\e

we obtain

e nfan<I|msupan<a+e
pa@

I|m inf a, = limsupa, = a

N—oo

Exercise 6. Find the radius of convergence for each of the following posegies: (a)). ,a"z", a e C;
(b) >0 a”2", acC; (c) Yo k', k an integer 0; (d) Yoo 2"

Solution. a) We haveyy ,a'z" = ¥, bz with by = ak, ae C. We also have,

lim suplb ¥ = lim sup|a/*’* = lim suplal = |a|.
koo ko0 ke>oo
Therefore, R= 1/|al, so
1
Rl a+0 '
o, a=0
b) In this case, p= a” where ac C.
n2 n2
R = Ilim =lim|——|=1i _ —
n—co | Dpig n—oo | g(n+1)? Nooo | gn?+2n+1 Nooo | @2N+1
0, la>1
= |lim — = =
N—oco |a12n+l 1’ |a|
oo, la<1
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c) Now, b = k", kis an integert 0. We have

R = lim sup|b,*™ = lim suplk"[*'" = lim suplk| = |K.

N—oo N—oo N—oo

So

%, k>0 kinteger

1
Tk {—% k < 0,k integer’
d) We can writex > , 2" = 31>, &z where

0, k=0
a = 2, k=1
"], k=nneN,n>1
0, otherwise
Thus,
lim supla % = limsup|1V/¥ = 1.
k—o0 k— o0
Thereforel/R = 1 which implies R= 1. \(

Exercise 7. Show that the radius of convergence of the pO\eeenCO

is 1, and discuss Cﬂ v ZLNland i (‘n %@@q@uent of this series is ndt-1)"/n.)
m,

Solutlo‘\w ower ser|e§23t nd then

0 else

P(e k ZakaWIthak {% ianeNs.t.k:n(nJrl).

n=1

To find the radius of convergence we use the root criterionthrcefore need the estimates
1< "Yn< n forne N.

The first inequality is immediate from the fact thatnl and hence 7 > 1. For the second inequality
note that

n< nn+l
. 1
P9 nn(n+1) S nﬁ

o n(n+% S \ryﬁ

—1\n
n(n+1) ’| ( 1) _ L < 1
n n(n+%

Using this one obtains




Vague memories of calculus classes tell me tfiat> 1, thus%Q =limsup "{f@a, = 1,i.e. R=1.

If z = 1 the series reduces 5", ¢ — L which converges with the Leibniz Criterion.

If z = -1 we note that the exponenténm 1) are always even integers and therefore the series is the
same as in the previous case cf 4.

Now let z= i. The expressior#% will always be real, so if the series converges at it converges

to a real number. We also note that formally
> 2 ifn mod 4€ {0,1}
1 ifn mod4e{2,3}

Define the partial sums,S= Zﬁ:o ck. We claim that the following chain of inequalities holds

a) b) ) d)
0 < Sar3 < Sak < Saksa < Saks2 < Saks1 < L.

To verify this, note that
16k%2 + 8k — 1
Sak+3 — Sak = Caks1 + Caks2 + Caks3z = “@k+ 1) @+ 2) (@t
Sapa — Sak = Cake3 + Cakes = K+3 \@ @
Saki2 — Sae1 = Cagan < ﬁ'@&@g
ebp

Relation b) is ObVI per bou 3& n-negativity constraint. We remark that

{Saki} k>1,| ibe boun l:ﬁwot subsequences that conuesgmé point. Now

that | ence betweeﬁﬁw +m» 1, m e 0,1,2 3 tends to zero, i.e. all subsequences
P ( @ he sa e he power series cgesalso in the case of=zi.

3.2 Analytlc functlons
Exercise 1. Show that {2) = |2° = x* + y? has a derivative only at the origin

Solution. The derivative of f at z is given by
v F(Z+h) = 1(2)
fa=m=n - "e¢

provided the limit exist. We have
@z+h)(Z+h) -z zZ+hz+zh+hh-zz

fz+h) -1 |z+h|2—|z|2_
h B h B h h
= Z+H+zr—] =:D.
h

If the limit of D exists, it may be found by letting the point I, y) approach the origin (0,0) in the complex

planeC in any manner. _
1.) Take the path along the real axes, that is 9. Thenh = h and thus

D=Z+h+zE=Z+h+z
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1. Claim: cosfg) cos{v) — sin(2) sin(w) = cosi + w).

Proof:

eiz + e—iz eiw + e—iw eiz _ e—iz eiw _ e—iw
2 2 2 2i
1, Cig 1,. iz

- = <e|zelw +e |ze |w) Z (eIZeIW +e |ze |w)

cosf) cosw) — sinz) sinfw)

— éZe|W e—lZe—|W
*32

— E <e|zelw + e—|ze—|w)

= COSE+w).
2. Claim: sin(z) cos() + cos) sin(w) = sin(z + w).
Proof:
iZ _ iz gw iw iz iz AW iw
sin() cosv) + cosg) sinw) = € 2ie eire é reret-e
— (e|ze|W e—IZe—IW 6 @w
— _e|ze|w %‘w C
o\'('\ NOZ' '}ﬁ@
rc tanz = % fu t|on defined and analytic?
ut on. Smce @_ are analytlc in the entire complex plane, it follows frora thscussion
|n the text followi Initton 2.3 thdanz = S'”Z is analytic wherevecosz # 0. Now,cosz = 0 implies

that z is real and equal to an odd multiple @fThus let
6= (B oz}

Thentanz is defined and analytic db—G. If ze G, thencosz = 0 sotanz is undefined on the non-extended
complex plane.

Exercise 9. Suppose that,zze G = C—{z: z< 0} and z = r,&%, z = re" where—r < 6,6, < 7. Prove
that if z, —» zthend, —» 6andr, —r.

Solution. Not available.

Exercise 10.Prove the following generalization of Proposition 2.20t GeandQ be open irC and suppose
f and h are functions defined on G,:¢2 — C and suppose that(6) c Q. Suppose that g and h are
analytic, d(w) # O for anyw, that f is continuous, h is one-one, and that they sati§fy-h g(f(2) for z in
G. Show that f is analytic. Give a formula fof(%).

Solution. Not available.

Exercise 11. Suppose that £ G — C is a branch of the logarithm and that n is an integer. Provettha
2" = expnf(2) forallzin G.
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For the real and imaginary part of w the following equationashhold

a =3(r+1%)coss
3.7)
b =3(r-1)sine.

If f(27 = w has imaginary part b= 0 thensind = 0 and|cosf| = 1. Therefore points of the form
a+ib,ae[-1,1],b = 0cannot be in the range of f. For all other points the equati{$3) can be solved
for r and 6 uniquely (after restricting the argument fer, r)).

Given any value of re (0,1), the graph of {re'”) as a function o® looks like an ellipse. In fact from

2 2
formulas 8.7) we see thaé 1(”1)) + (ﬁ) =1
If we fix the argumend and let r vary in(0, 1) it follows from from equation3.7) that the graph of (re'?)

is a hyperbola and it degenerates to rays if z is purely reahuaginary. In the casé € {(2k + L)r |k € Z}
the graph of f in dependence on r is on the imaginary axis and io{2k7r|k € Z} the graph of fre') is

either(—oo, —1) or (1, ). If cosd # 0 andsing # Othen(cose)2 ( b ) =1

sing

Exercise 14. Suppose that one circle is contained inside another andttieat are tangent at the point a.
Let G be the region between the two circles and map G confdyroato the ope j itMisk. (Hint: first try

z-a™)

Solution. Using the hint, define the Mdbius transfor% Za)” 1 WhICh sends the region G
between two lines. Afterward applylng a rota nslation, it is possible to send this region
to any region bounded by two parall t Hence@b %2 = cz+ d where|c| = 1 such that

‘T\S(T y !
prenie SL\'“% el A6

Finally, the M&bius transformation

gion yields tiight half plane
expS(T(G))) = {x+1iy : x> 0}.
z-1
R@) = z+1

maps the right half plane onto the unit disk (see page 53).cEléme function f defined by(&pS(T(2)))
maps G onto D and is the desired conformal mapping (f is a caitipn of conformal mappings). Doing
some simplifications, we obtain

Cematdyl
where the constants ¢ and d will depend on the circle location
Exercise 15. Can you map the open unit disk conformally of#o0 < |7 < 1}?
Solution. Not available.

Exercise 16.Map G = C - {z: -1 < z < 1} onto the open unit disk by an analytic function f. Can f be
one-one?

Solution. Not available.

Exercise 17. Let G be a region and suppose that G — C is analytic such that (G) is a subset of a
circle. Show that f is constant.
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Exercise 24.Let T be a Mobius transformation,  the identity. Show that a Mébius transformation S
commutes with T if S and T have the same fixed points. (HintE¥secises 21 and 22.)

Solution. Let T and S have the same fixed points. To show=TSST, T+ id.

* 1 Suppose T and S have two fixed points, sand 2. Let M be a Mdbius transformation with(g}) = 0
and M(z,) = . Then
MSM(0) = MSM Mz = MSz =Mz =0
and
MS M(c0) = MSM 1Mz, = MS2 = Mz, =

Thus MS M! is a dilation by exercise 22 a) since MShas 0 andw as its only fixed points. Similar,
we obtain MT M1(0) = 0 and MT M}(c0) = o and therefore is also a dilation. It is easy to check that
dilations commute (define(@ = az, a> 0 and (2) = bz, b> 0, then C¥2) = abz= baz= DC(2)), thus

(MTMH(MS ML) = (MSMHY(MTM)
= MTSM!'=MSTM!?
= TS=ST

* . Suppose T and S have one fixed points, say z. Let M be a Momsﬁjmmau M2z) = 0. Then

MS M(c0) = MS MtMz = M elz@O

L)
asoo as its only fixed point. Similar, we

Ii4s easy to check thatslations commute
6 z+b+a=DC(2), thus

Thus MS M1 is a translation by exercise 22
obtain MT M(c0) = o and therefor S atlon

(define G2) = z+ 1 and D% en C z)

( SNI’l)(MTM‘l)
(e\,\e\N a AA STI\/r1

S=ST
Exercise 25. Findﬁthe abelian subgroups of the group of Moébius transfations.
Solution. Not available.
Exercise 26.26. (a) Let GL(C) = all invertible 2 x 2 matrices with entries i€ and let M be the group
of Md6bius transformations. Defing : GL,(C) —» M bygo( a b ) = 2D ghow thaty is a group

c d cz+d
homomorphism of GI(C) onto M. Find the kernel op.
(b) Let S Ix(C) be the subgroup of GI(C) consisting of all matrices of determinant 1. Show that thagen
of S Lp(C) undery is all of M. What part of the kernel @f is in S L,(C)?

Solution. a) We have to check that if

A:(‘Zl 3) and Bz(g1 g)
theng(AB) = ¢(A) o ¢(B). A simple calculation shows that this is true. To find the keof the group
homomorphism we have to find all z such t@ﬁﬁ = z. This is equivalent to agb = cZ + dz and by
comparing coficients we obtain = ¢ = 0 and a= d. Therefore, the kernel is given byNker(p) = {Al :
A € C*}. Note that the kernel is a normal subgroup of BL).
b) Restrictingy to S LQ(C) still yields a surjective map since for any matrix & GL,(C) both A and
the modification M= d—tAA have the same image and the modification matrix M has by rcmtisin
determinant 1. The kernel of the restriction is simpIyI$ Ly(C) = {+1}.
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0 <t <1}. Soyj(t) = iandy,(t) = —1. Therefore,

ff:ff+ f
Y Y1 Y2

|Z2%dz+ | |Z2%dz

Y1 Y2

1 1
= f (t? + 1)(i)dt + f (1 -1)? + 1)(-1)dt
0 0

1 1
i 2 _ 2 _
= Ifo (t° + L)dt fo (t° =2t + 2)dt

e e !
=i|z+t] - |z -2+ 2t
3 o I3 0
4 1
—§|—(§—1+2)
4 4

zg(_i i \ CO U\(

Exercise 9. Definey : [0,27] —» C by&@*‘v@&a‘ls some integer (positive, negative, or zero).

Show thatfy% dz = 2rin.

Solution. é‘%ﬁ?’&{@mrx@ ﬁot%@] Thus
P(e\,\ Pf Qq "tingt dt—f in dt = in(2r — 0) = 2rin.

0
Exercise 10. Definey(t) = €' for 0 < t < 2r and findf7 Z" dz for every integer n.

Solution. Clearly, y(t) = €™ is continuous and smooth ¢@, 2] (It is the unit circle).

Casel:n=-1
fz‘l dz:f e tigh dt—lf dt = 2ri.
b% 0

o 2 g+ 1"
f eie" dt = i f Mt dt =t
y 0 0 |(n+ 1) 0

_ i[ei(ml)t]z’r:i[ei(ml)?n_l]

N
o
N
I

n + 1 0 n+1
= n_l [cos(b+ 1)2n) —isin((n+ 1)27)1] = —— [1— i-0-1]
= 0.

Exercise 11. Lety be the closed polygdd —i,1+i,-1+i,-1—i,1—1i]. Findfy% dz.
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0 <t < 2x. Clearly f(2) is analytic onC andB(0; 2 < r < w) c C. Then,

1 [ fw) 1w
- 2)_27r|f;w+2idW(:> l_271i yw+2idw
-dz= 2ni

= =
y Z+ 2

! f (W) 1
f(2|)_2nifyw_2idw<=> fyZ_Zidz_Zm.

Z+1 11 3 1 3 1
fyz(22+4)dz_ Z£2d2+§£z—2idz+§£z+ 2idZ

1. 3_ .. 3 .
= 21(27r|) + §(2m) + é(Zﬂl)

= uk
o | -~ 0.
Exercise 11.Find the domain of analyticity of \e ‘C

orepde
also, show thatal {@- sabr ta
\l\e\m e @ﬁ

P(e Pag @= (1)2k+1 for [4<1

(Hint: see Exercise lll. 3.19.)

if 2 <r < oco. Similarly,

It follows that,

Solution. Not available.

Exercise 12. Show that

for some constantsEE,, - --. These numbers are called Euler’s constants. What is thieisaaf conver-
gence of this series? Use the fact that coszsecz to show that

2n 2n _1( 2n
En( por p |Eorat( por g JEeras s 03 5 e (car =0

Evaluate B, E4, Eg, Eg. (E10 = 50521and E, = 2702765)

Solution. It is easily seen that

secz=1+ Z (Eli;l 7, (for some &, Ea,...),
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Solution. Assumey is a closed and rectifiable curve in G apd~ o;. Sinceo(t) = a ando,(t) = b, we
surely have thatr; ando, are closed and rectifiable curves in G. If we can show that o5, then we get
v ~ 03, Since~ is an equivalence relation, that is:

y~o1 and op~o0p=7y~o0).
So, now we show; ~ o, that is, we have to find a continuous function[0, 1] x [0, 1] — G such that
I(s0)=ci(s)=a and I(sl)=ox(s)=b, for 0<s<1

andI'(0,t) = I'(L,t) for 0 < t < 1. LetI'(s,t) = tb+ (1 —t)a. ClearlyI is a continuous function. (it is
constant with respect to s and a line with respect to t). Initaid, it satisfies(s,0) =aVv0 < s< land
I'(ss1)=bVv0<s<landl'(0,t) =th+(1-tla=T(1,t)V0O<t< 1l Soo; ~ 0.

Exercise 2. Show that if we remove the requiremei(0, t) = I'(1,t) for all t” from Definition6.1 then the
curveyo(t) = €™, 0 <t < 1, is homotopic to the constant curyg(t) = 1 in the region G= C — {0}.

Solution. Not available.

Exercise 3. 3. LetC = all rectifiable curves in G joining a to b and show that Definiti6.11 gives an

equivalence relation o@. \(
| | cO- A8}

Solution. Not available.

Exercise 4. Let G = C - {0} and show that every (%a_xg &is homotopic to a closeceavhose
trace is contained ifz: |2 = 1}. N %‘

Solution. Not availaple. /;—

Exermse 5. Qagraf re@“ 2|€0s 2|’ for 0 < 6 < 2r.

A sketc zeros ozl (they are+i) are inside of the closed and rectifiable
P ( vey (The regi a cIover with four leaves ). Using prfraction decompositions gives

1 1 1
f > = f— dz- — —— dz
yZ2+1 2i yZ—i 2 y Z+i
~ 1 1, 1t
- "o —i i L Z+i
=, m(nly; I) n(y; —i))
ef 4.2 p. 81
= 1-0=0,

since rfy; i) = n(y; —i) since i and-i are contained in the region generated fpyHence

f dz
2+1

Exercise 6. Lety(0) = 6’ for 0 < 6 < 2r andy(6) = 4r — 6 for 27 < 6 < 4. Evaluate

ZzJr 2

Solution. A sketch reveals that the zerai is inside the region and the zerdis outside the region. Using
partial fraction decomposition yields

f dz B 1[ 1 dz lf 1 dz
y Z2 + 12 B 2ni J, z—in 27 ), z+in

= Ny im)-n(y,-ir) =0-1=-1,

Def4.2p. 81
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since ir is not contained in the region generatedjyso r(y; ir) = 0 and—ix is contained in the region, so

n(y; —in) = 1. Hence,
dz
e R
2+

Exercise 7.Let f(2) = [(z-1-i)- (z-1-3i)- (z-1-1)- (z-3-i)] "t and lety be the polygoif0, 2, 2+2i, 2i, O].
Find [ f.
Y

Solution. Not available.

Exercise 8. Let G= C — {a, b}, a # b, and lety be the curve in the figure below.

(a) Show that (y; @) = n(y;b) =0

(b) Convince yourself thatis not homotopic to zero. (Notice that the word is “convinegid not “prove”.
Can you prove it?) Notice that this example shows that it ssjide to have a closed curgein a region
such that fy; 2) = Ofor all z not in G withouty being homotopic to zero. That is, the converse to Corollary
6.10 is false.

Solution. Lety be the path depicted on p. 96. We can write it as a sum of 6 patws. of them will
be closed and have a and b in their unbounded component. foheréwo integral§ yill be zero and we
will have another 2 pair of non-closed paths. The first paigihs at the && ing pair and goes
around a in opposite direction. The second pair begins a le r *pair and goes around b in
opposite direction. They also meet at the rlghtmo %f‘v\/e integrate over the path around a
is equivalent to evaluatf b 1 dzw ’% < t <mandy,(t) = a+ret, 7 <t < 2rfor

some r> 0. Itis easily seen that 66
e\N -‘ %g dz i
P ( aj\’erefore Gy; arly we obtain (v; b) =

Exercise 9. Let G be a region and leto andy; be two closed smooth curves in G. Suppgse y1, andl’
satisfies (6.2). Also suppose thefs) = I'(s,t) is smooth for each t. If w C — G define Ift) = n(y;; w) and
show that h [0, 1] — Z is continuous.

Solution. Not available.

Exercise 10. Find all possible values of 1,22, Wherey is any closed rectifiable curve i@ not passing
through=i.

Solution. Lety be a closed rectifiable curve i@l not passing througki. Using partial fraction decompo-
sition and the definition of the winding number we obtain

(% - i( Lo [ dz) = % rin(y:i) ~ 2xin(y; ) = (i) ~ (i ).
i

,1+2 2i\J,z-1 Z+i

Exercise 11. Evaluate fy

ez;?'z dz wherey is one of the curves depicted below. (Justify your answer.)

Solution. Using Corollary 5.9 p. 86 we havéa € G — {y}
f@

1
_ Y dz=24if® “9)—
| G=ay dz= 2#if"(a@)n(y; a) a0
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pre

If z = a, then clearly f?(a) = 0for m— (n—k) > 0and fW(a) # 0form— (n—k) = 0. If k = 0and m= n,
then fM(a) = ™ (a) = mig(a) # 0since ga) # 0 by assumption. Hence(™(@) = 0forn=1,2,...,m-1
and f™(a) # 0forn=m

Exercise 4. Suppose that f G — C is analytic and one-one; show that(Z) # 0 for any z in G.

Solution. Assume f(@) = 0 for some & G. Then {a) = @ wherea is a constant. Define
F@ =12 -a

Then Ha) = f(a) —a = a —a = 0and F(a) = f’(a) = 0 by assumption. Hence, F has a as a root of
multiplicity m> 2.

Then, we can use Theorem 7.4 p. 98 to argue that there éssa@ and6 > 0 such that fol0 < |£ — @] < 6,

the equation 2) = £ has exactly m simple roots i@ ¢), since f is analytic in B; R) anda = f(a). Also
f(2 — @ has a zero of ordermx 2at z= a.

Since {2) = ¢ has exactly m (our case m 2) simple roots in Ba; €), we can find at least two distinct
points 2, z € B(a; €) c G such that

f(z) =¢ = 1(z)
contradicting that f isl — 1. So f(2) # Oforany zin G. \(

Exercise 5. Let X andQ be metric spaces and suppose thxe 5{}@ -one and onto. Show that f
is an open mapf f is a closed map. (A functlkésg p if it takes clamats onto closed sets.)

Solution. Not available.

Exercise 6. Let P ‘.ecn\ed by @) = m@ is an open map but is not a closed map.

(Hint: Go¢ -‘ Z'Imz 2t ez;tO})
ot av.

Exercise 7. Use i:eorem to give another proof of the Fundamental féneof Algebra.

Solution. Not available.

4.8 Goursat’s Theorem

No exercises are assigned in this section.
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Chapter 5

Singularities

5.1 Classification of singularities

Exercise 1. Each of the following functions f has an isolated singuiagt z= 0 mine its nature; if
it is a removable singularity defing@) so that f is analytic at = 0; if

it is an essential singularity determing{z : 0 < |7 < ¢}) for a

w@
com N
eﬁf

a)

\?(@\"
d)

e)

9)

h)

pa@

£.60

_cosz—1

f(2) = exp@™);

f(2) = Iog(z+ 1);
1
f(2) = cos@ )
Z+1
f2) = 2(z- 1)
f@=@1-e)
f(z =zsin%;
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Chapter 6

The Maximum Modulus Theorem

6.1 The Maximum Principle

Exercise 1. Prove the following Minimum Principle. If f is a non-constamalytic tion on a bounded
open set G and is continuous on @Ghen either f has a zero in G ¢f] sﬂes infmum value 66 .
(See Exercise V. 3.6.) é

Solution. Since fe C(G_) we have f| € C(G) uch thatf(a)l <|f(9|vVze G.
If a € 9G, then|f| assumes its mini and done. Otherwise, if@dG, then ac G
and we can write G: the com at issaA; for some i. But eachiAs a

region, so we ¢ IV 3.6 h|c £ Oor f is constant. But f was assumed
to be 0 f has toh Therefoﬂeereﬁ has a zero in G off| assumes its
ue or@G

P ( Exercise 2. Let G e ﬁged region and suppose f is continuousoar@ analytic on G. Show that
if there is a constant & 0 such that f(2)| = ¢ for all z on the boundary of G then either f is a constant
function or f has a zero in G.

Solution. Assume there is a constantc0 such thaff(z)| = c for all ze §G. According to the Maximum
Modulus Theorem (Version 2), we get

max|f(2) : ze G} = max{|f(2)| : z€ 4G} = c.
So
f@l<c,  VzeG. (6.1)
Since fe C(G) which implies f| € C(G) and hence there exists areaG such that

If@I<I1f@l < c
(6.2)

then by Exercise IV 3.6 either f is constant of f has a zero in G.

Exercise 3. (a) Let f be entire and non-constant. For any positive reahber ¢ show that the closure of
{z:1f(29)| < c}listhe sefz: |f(2)| < c}.
(b) Let p be a polynomial and show that each compone(z 0ffip(2)| < c} contains a zero of p. (Hint: Use
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Exercise 2.)
(c) If pis a polynomial and ¢ 0 show that{z : |p(2)| = c} is the union of a finite number of closed paths.
Discuss the behavior of these paths as .

Solution. Not available.

Exercise 4. LetO <r < Rand put A= {z: r < |7 < R}. Show that there is a positive numher 0 such
that for each polynomial p,
sudlp(d -z Y :ze Al > €

This says thatZ is not the uniform limit of polynomials on A.

Solution. Not available.

Exercise 5. Let f be analytic or§(0;R) with |f(2)| < M for |7 < R and|f(0)] = a > 0. Show that the
number of zeros of f in(®; £R) is less than or equal t%;—z Iog(M) Hint: If z4, ..., z, are the zeros of f

in B(0; £R); consider the function

n 2 -1
6@ = 1@ ﬂ(l— —) ,

e uk
and note that ¢0) = f(0). (Notation: [T;_; a = a1a;. . O
Solution. Not available. \
Exercise 6. Suppose that both f an ‘-l% B(O [f(2)| = |0(2)| for |2 = R. Show that if
neither f nor g vam%es e is a such that f= Ag.
Solutlon

(? et f &k(le R) and forO < r < R define &) = maxXRe f(2) : |74 = r}.
P ow that unles an(r)\ls a strictly increasing function of r.

Solution. Not available.

Exercise 8. Suppose G is a region, :fG — C is analytic, and M is a constant such that whenever z is on
0,G and{z,} is a sequence in G with z lim z, we havdim sup|f(z,)] < M. Show thatf(z)| < M, for
eachzinG.

Solution. We need to show
limsup|f(2] <M YU € 0,,G.

Z—a

Then we can use the Maximum Modulus Theorem (Version 3galthstf showing that

limsup|f(z,) < M = limsup|f(2)]| < M,

Z—a

we show the contrapositive, that is

limsup|f(2)| > M = limsup|f(z)| > M.

Z—a

So assumémsup,_,, |f(2)| > M. But this impliedim sup,_,,|f(z,)| > M since 7 — z as z— oo, thatis z
gets arbitrarily close to z and since f is analytic, that is\tauous, we have(k,) gets arbitrarily close to

f(2).
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Exercise 6. Prove Hardy’s Theorem: If f is analytic dB(0; R) and not constant then

21
|(r)=%f0 |f(re'’) do

is strictly increasing andog|(r) is a convex function adbgr. Hint: If 0 < r; < r < r; find a con-
tinuous functiony : [0,27] — C such thate(6) f(re'?) = |f(re'?)| and consider the function & =

fOZ” f(z€%)p(0) db. (Note that r is fixed, sp may depend onr.)
Solution. Not available.

Exercise 7. Let f be analytic in an¢D; Ry, R;) and not identically zero; define

lo(r) = % fo 2ﬂ|f(rei9)|2 do.

Show thatogl,(r) is a convex function dbgr, R; < r < R,.

Solution. Not available.

6.4 The Phragmeén-Lindelof Theorem O \)\(

Exercise 1. In the statement of the Phragm Xorem theinement that G be simply con-
nected is not necessary. Extend Th lons & roperty that for each z i, G there is

9
a sphere V irC,, centere . is d Give some examples of regions that
are not S|mp y C e thISKp@%
u;i lable.

So t|

P ( gbrmse 2.1n T!‘?e@guppose there are bounded analytic funciiens, ..., ¢, on G that never

vanish and.,G U B, such that condition (a) is satisfied and condition (b) is adatisfied
for eachyy and K. Prove thatf(z)| < M for all zin G.

Solution. We haveps, ..., ¢, € A(G), bounded andy # 0 by assumption. Henck(2)| < « ¥ z in G for
each k= 1,...,n. Further a) for every a in Aimsup,_,|f(2| < M and b) for every b in Bandny > 0,
limsup_, IT@llek@* <MVk=1,...,n

Also because G is simply connected, there is an analyticdrafilog ¢x(z) on G for each k= 1,...,n
(Corollary IV 6.17). Hence, d2) = expinklogek(2)} is an analytic branch ofp(2)* for nx > 0 and
k(2| = k(@Y k=1,..., n. Define F: G — C by

n
F@ =@ [ [ @™
k=1
then F is analytic on G and

|F(z)|<|f(z)|]_[|sok(z)|"k:<‘”k < |f(z)|l_[KkKknk|‘Pk(Z)| 1@ vzeG.

lo(2)|<ki VK

Hence,

M, acA
lim sup|f(2)| .
7z-a ( ) (b) MKk , aeBy Vk
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by definition. Then, clearl{ls > 0 such thatim, - sud|f(2)| : ze GN B(a;r)} > M + 6. Let{z,} be a

sequence witfim,_,., = a and let f = 2|z, — a. Obviously, we havém,_,. r, = 0. Next, consider the
sequence, = suf|f(2)] : ze F n B(a; ry)}. Thenlim,_,. @, > M + 6. In addition,{ay} is @ nonincreasing
sequence, therefolén, . an > M + 6 impliesa, > M + 6 ¥n. Thus,3y, € G n B(a; ry) such that

[f(yn)l > M + 6. Takinglim supin this inequality yields

limsuplf(yn)l > M+,

n—oo

that is
limsup|f(yn)| = M

n—oo

wherelimp_ Yn = &, Which gives “not 6.5)". Hence (6.5 implies 6.6).

Exercise 5. Let f : G — C be analytic and suppose that G is bounded. kixnzoG and suppose that
limsup,_,, |f(2] < M for win G, w # z. Show that iflim,_,, [z — z|°|f(2)| = O for everye > 0 then
|f(2)| < M for every z i9G. (Hint: If a ¢ G, considerp(2) = (z— z)(z— a)1.)

Solution. Not available
Exercise 6. LetG={z: Rez>0}andlet f: G —» Cbe an analyt|c 0 \k%pﬁwﬁ(zﬂ <M
for win 0G, and also suppose that for every 0, é

e ‘E@l
Showthatf(z)|<M_§ @KX\ “ O.‘ l66

Solu\tT |Ia
se 7. Let Q_%ze and let f: G — C be analytic such that (i) = 0 and such that
fo A

I|m sup,_, (2| < Iso, suppose that for evefy0 < § < 1, there is a constant P such that

(2] < Pexp(z™).

Prove that .
(1 _ X)2 + yZ]z

f@I =M\ 72

Hint: Consider 12) (1*2)

Solution. Not available.
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We also have
h(2| <1 ¥ze D

since h: D — D. Thus, the hypothesis of Schwarz’'s Lemma are satisfiechemck, we get
I (0) < 1.
We have
M@ = [of@@)| = g'(f(g‘%z»)f'(g‘l(z» (0'@)

g @ NG @)

mwm
where the last step follows from Proposition 2.20 provid€dd(2) £ 0. So

h’(0) g(f(g™ () f'(g_l(O))

1
mw@>

TERGUGT (a)_f()\)\(

HOBIE %ﬁ\ C
Thus, we have shown that NOK@?

Exercise 6. Let G ﬁt&t@ ply co emonle er of which is the wholagld.et f be a

one-one m ng oflcem % pute = f(a). Prove that for any one-one analytic

m& > With at|h’(a)| < |f’(a)|. Suppose h is not assumed to be one-one;
P ( txan be s 6@

Solution. Defin he function & = f~1(h(z). This is well-defined since f G; —io—» Gy and h:

(¢'(a) > 0 by assumption). Therefore

G, =, G,. Clearly F(2) is analytic since f and h are analytic,(B is one-one and F G; — G; by

construction. We have
F(a) = ffl(h(a)) = ffl(a) =a

Thus by Exercise 5, we get
IF'(@) <1

We have

F'(2 = (@) = '(h@)N' (@D = (2

1
f7(f-1(h(2))
where the last step follows by Proposition 2.20 providgd f(h(2))) # 0. So

1 W@ (@)
fr(f-(h(a))) f(f-Ha))  f(a)
which is well-defines sincé€(B) # 0 by assumption (f is one-one). Since

I @)l
e =t
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iff A has a limit pointin G.

(d) Letae G andg = J({a}). Show thaty is a maximal ideal.
(e) Show that every maximal ideal inf®) is a prime ideal.

(f) Give an example of an ideal which is not a prime ideal.

Solution. Not available.

Exercise 12. Find an entire function f such that(ii + in) = O for every integer n (positive, negative or
zero). Give the most elementary example possible (i.eosehihe pto be as small as possible).

Solution. Not available.

Exercise 13.Find an entire function f such that(h+ in) = O for all possible integers pm. Find the most
elementary solution possible.

Solution. Not available.

7.6 Factorization of the sine function

Exercise 1. Show thatosrz = [Ty, [1- mitg . O U\(

@n-1p

.
Solution. We know by the double-angle identity of gfcos(z) (this is proved easily by
using the definition) osin(2rz) = 2 singrz) cos e§ owm(;rz) = nz[1;2, (1- %), we obtain

n S

mﬁ cos(r2)
n=1

\1\6 i ) .
P(e 939% <2nZ;2 “@m iz1)2‘) ﬂ( )COS@

where the last statement follows by splitting the produtit & product of the even and odd terms (rear-
rangement of the terms is allowed). Hence

2”213(1" 2 )Z)fl( n- 1)2) ﬁ(l‘ _)C"S@

— 27rzln_!(1— )lnj(l @n- 1)2) zﬁ(l )cosérz)

n=1

Thus,
= 7
COSQTZ) = l_[ (1 - ﬁ) .

n=1

Exercise 2. Find a factorization forsinhz andcoshz.
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Thus,

_N (1 ® a1
F(z)_z +f1 etz ! dt (7.12)

I
~ n!(z+n)

Claim 1: T'(2) given by 7.12) is the analytic continuation of7(11), that isT'(Z) given by 7.12) is defined
forallze C-1{0,-1,-2,...}.

Proof of Claim 1: We know from the book th#(z) is analytic for Rgz) > 0.

Claim 2: ¥(2) is analytic for Rg2) < 0. Thus¥(2) is analytic onC.

Proof of Claim 2: Assume R@) < 0. Then

|t271| — tRQZ)*l < tfl'
te[1.0).R&2<0

But since e3'tR€@-1 _, 0 as t — o, there exists a constant € 0 such that R&9-1 < Ce when t> 1.
Hence, we have

1 1
et < e Y = e 'tRE L c elcedt = ce

and therefore Ce! is integrable on(1, o). By Fubini’s Theorem for anfy} c Gix\ﬁe(z) <0},

fy fl " et gt d{ ég;a‘eAg’p .
which implies Q
.‘( Om ﬁ e“téﬁe %_666
i@\ 118
P { e age @ = fl et dt e H(C).

Thus, Claim 2 is*proved.
It remains to show that

N (1
*(@ = nZ:;) nl(z+ n)

is analytic onC — {0, -1, -2,...}. Note thatd(2) is uniformly and absolutely convergent as a series in any
closed domain which contains none of the poytsl, —2,. .. and thus provides the analytic continuation

of ®(2). Since
ey _1 n o)
> —I( r, f e'tr ! dt
- nl(z+n) 1

is analytic and we know (Theorem 7.15 p. 180)

I = f et dt
0

for Rg2) > 0, we get

o (1) © ot
F(Z):Zn!(z+n)+f1 etz 1 dt

n=0
is the analytic continuation of7(11) for ze C —{0,-1,-2,...}.
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8.3 Mittag-Leffler's Theorem

Exercise 1. Let G be a region and I€i,} and {by,} be two sequences of distinct points in G without limit
points in G such that ana# by, for all n,m. Let S(2) be a singular part at gand let p, be a positive
integer. Show that there is a meromorphic function f on G whmdy poles and zeros afe,} and {bn}
respectively, the singular part atz a, is S,(2), and z= by, is a zero of multiplicity p.

Solution. Let G be a region and lef,,} be a sequence of distinct points in G with no limit point in G;
and let{pm} be a sequence of integers. By Theorem 5.15 p.170 there isadytiarfunction g defined on G
whose only zeros are at the pointg; tfurthermore, k, is a zero of g of multiplicity p.

Since ge H(g) and{a,} € G, g has a Taylor series in a neighborhoo¢bR R,) of each @, that is

0@ = > ez - a)* € Blan; Ry)
k=0

whereay = £g®(a,). Goal: Try to use this series to create a singular pafz) at a, such that j(2)gn(2) =

sh(2) or N
@ Doz a0t = Z(Z oy Z(Z oy Zakrn(ﬁ\z
Claim: CO .
. \S.
(2 =§Q®5@K (8.1)
works.

Proof of the clai "
\,\e\N = ak Y Bi(z-an) Kz - an)k
P(e P%OQ ; g ( )-( )

© m
= Zak Bj(z—an)™
R
m, oo
. Ain
= (z-an)™ ) aBi = J
JZJ ;;  (z-a)

where the last step follows by choosing

(o)
Z akBjk = Ajn.
k=0

Since G is aregion, G is open. L} be a sequence of distinct points without a limit point in G andh
that a, # by, for all n, m. Let{r,(2)} be the sequence of rational functions given by

"2 = Z (z- an)l+k

(see 8.1)). By Mittag-Lgjler's Theorem, there is a meromorphic function h on G whosespate exactly
the points{a,} and such that the singular part of h af & r,(2).

Set f=g-h. Then by construction f is the meromorphic function on Gsetanly poles and zeros af&,}
and{bn} respectively, the singular part atz a, is S,(2), and z= by, is a zero of multiplicity p. (Note that
the zeros do not cancel the poles since by assumpgientg, ¥ n, m).
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Solution. Not available.

Exercise 4. Let G be a simply connected region andliebe its closure inC.; 0,.G = I' — G. Suppose
there is a homeomorphisgofI" onto D (D = {z: |7 < 1}) such thaty is analytic on G.

(a) Show thatp(G) = D and¢(d-G) = aD.

(b) Show that if f: 9,,G — R is a continuous function then there is a continuous funatiom” — R such
that u2) = f(2) for zind.,G and u is harmonic in G.

(c) Suppose that the function f in part (b) is not assumed todmtinuous ato. Show that there is a
continuous function uG~ — R such that (z) = f(2) for z indG and u is harmonic in G (see Exercise 2).

Solution. Not available.

Exercise 5. Let G be an open set,aG, and G = G — {a}. Suppose that u is a harmonic function og G
such thatim,_,, u(2) exists and is equal to A. Show that if:UG — R is defined by {z) = u(z) forz # a
and U(a) = A then U is harmonic on G.

Solution. Not available.
Exercise 6. Let f: {z: Re z= 0} — R be a bounded continuous function and defindai: Re z> 0} - R

” u(x+iy) = fw xf(it) \(

X2 + (y<t)2 Y+ t)2 Q
Show that u is a bounded harmonic function on the g eh atfor cii, f(ic) = lim i u(2).

Solution. Not available. w
Exercise 7. Let D i m u pose faD ﬁj %@@us except for a jump discontinuity at
b ). Sh

z=1. Defln 0 Let v be a harmonic congigu. What can
avior ofry iA, h about (re’) asr — 1~ andd — 0?

preht a@aﬁge

10.3 Subharmonic and superharmonic functions

Exercise 1. Which of the following functions are subharmonic? supenmamic? harmonic? neither

subharmonic nor superharmonic? (afx,y) = x* + y?; (b) ¢(x,y) = X2 = y?; (€) p(x,y) = X2 +y; (d)
p(xy) = X —y; (€)p(x.Y) = X+ ¥ (f) p(x.y) = X =y

Solution. Note that[” sing do = 0, " cosd do = 0, [” sir’6 do = = and [ cog6 do = x. For all

a = (a,B) € Cand any r> 0 we have

a)
o@+re?) = o(a+rcoss,B+rsing) = (a+rcosd)? + (B + r sind)?
= ?+ 2ar cost + r?cos 6 + B + 2Br siné + r2sirf 9
= a®+B% + 2ar cosd + 28r sing + r2.
Thus

1 (" - r (" ro(r .
— f o(a+re) do 2rpe f cosy do +2" f sing dg +r2
2 J_, T J . T J_.

=0 =0
= a?+P+1?>a” + B = ¢(a).
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Thus

a+p+ — fc059d9+—fsm9d9+—fsm29d9

%f o(a+re'’) do

2
a+p+ % 2a+[32 = ¢(a).
Hencep € Subhar(G).

f)

p@a+re”)y = o(a+rcoss,B+rsing) = (a +rcosd) — (8 + r sing)?
= a+rcos— B2 —2Brsing —r?sirf 6.

a-p f cosh d0—’8—f sing d0——f sirf 6 do
27r n
=0 v
Folcap? CO AN
PR é_”ie
Hencep € Superhar(G).
Exercise 2. Let Subhar( ﬂg den t@@/ tteeadesubharmonic and superhar-

monic functions n Q(f
(a) Sh @Ejjha ( ) and Su gpare sed subs&EHR).
ion of Ha Id for subharmanid superharmonic functions?
P ( Solut|on Not a@ @.

Exercise 3. (This exercise is gicult.) If G is a region and if f: 9,G — R is a continuous function let
us be the Perron Function associated with f. This defines a magdi,G;R) — Har(G) by T(f) = us.
Prove:

(@) T islinear (i.e., Tayfy + axfp) = a; T(f1) + axT(f2)).

(b) T is positive (i.e., if fa) > Ofor all ain 9.,G then T(f)(2) > Ofor all zin G).

(c) T is continuous. Moreover, {f,} is a sequence in @..G; R) such that £ — f uniformly then Tf,) —
T(f) uniformly on G.

(d) If the Dirichlet Problem can be solved for G then T is ome-0ls the converse true?

Thus

% f e(@a+re?) do

Solution. Not available.

Exercise 4. In the hypothesis of Theorem 3.11, suppose only that f is adeglifunction od..G; prove
that the conclusion remains valid. (This is useful if G is abaunded region and g is a bounded continuous
function ondG. If we define f: d.,G — R by f(2) = g(2) for z in G and f(e0) = 0 then the conclusion
of Theorem 3.11 remains valid. Of course there is no reasexpect that the harmonic function will have
predictable behavior neaso — we could have assigned any value {oof. However, the behavior near
points ofdG can be studied with hope of success.)

Solution. Not available.

Exercise 5. Show that the requirement that @& bounded in Corollary 3.5 is necessary.
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11.3 Hadamard Factorization Theorem

Exercise 1. Let f be analytic in a region G and suppose that f is not idexijczero. Let G = G - {z:
f(2) = 0} and define h Go — R by h(z) = log|f(2)|. Show thaff —i% = L onG.

Solut|on Let f be analytic in a region G and suppose that f is not idetijczero. Let G = G - {z
f(2) = 0}, then h: Go — R given by I{z) = log|f(2)| is well defined as well a# is well defined on @
Let f = u(x y) +iv(x,y) = u+iv. Since f is analytic, the Cauchy-Riemann (C-R) equatigns vy and
Uy = —Vy are satisfied. We have by p. 41 Equation 2.22 and 2.23

fP=uc+ivy and f=-iuy+v
and thus

27 = Uy + vy —iuy + vy

implies

f = % (ux + vy — iUy + vy) S ; ( —iuy —iuy + uX = 2uX - 2|u>b\(|uy
Therefore, a\e C

ﬁﬁ‘é@w@ @19
Next we cal\n.‘ﬁg—“%ﬁ @W é?“ﬁﬁg Il’ﬂ 1 |og(u2 +V2). Using the chain rule, we

P( \, agex X+hvvx TRVl uZ+V2VX
and P

TERvA T IRYA
and hence

oh .oh .
x oy T M
u \' . u . \

Uy + Vy — i Uy — i v
WHv2 e 22 Y e

u . \' .
= —\/Z(UX - |Uy) + W(V - IVy)

u? +
~ u
o m(ux 'Uy)+ 2( Uy — iUy)
u : i .
= ——(ux—iuy) — ——(u—iu
u2+v2(x y) u2+v2(X y)
u-—iv .
= W
u-—iv .
= ———(ux—iu
(u—|v)(u+|v)( x— iy)
B Uy — iUy
T ou+iv
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