
Introduction to Chemical Engineering Thermodynamics

Recommended Booksk

Chem
The Chemistal Engineering
The Chem
Th

- "Engineering & Chemical Thermodynamics" by Milo D Koretsky, 2nd Edition.
- "Thermodynamics, an Engineering Approch" by Yunus A Cengel. 7th Edition.

Engineering and Chemical **Thermodynamics**

Milo D. Koretsky

Lecture Outlines Notesale. Zereth law ef3Thermodynamics.

✓ Concept of Work.

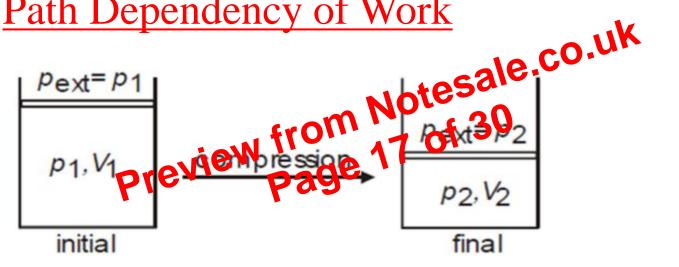
✓ Concept of Internal Energy.

✓ Concept of Heat.

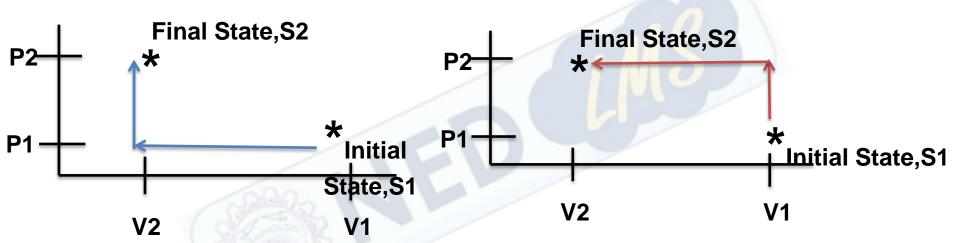
Temperature Scales ce Point Notesale.

Refrence Point

- * A fixed point reference heasily reproducible state of an arbitrarilye violen standare system.
- Suppose ice and steam point of water can be selected as reference point in one temperature scale.


Interpolation

- ❖ A measurement of change between any two reference.
- \bullet Such as T = Ax + B this is linear relationship.
- Quadratic relationship.



Path Dependency of Work

Problem Specific Heat Capacity Co.uk

Problem: Calculate the appropriate of heat necessary to isobarrically raise the temperature of operable of CO₂(3) from 500 K to 2000 K, at P= 0.I MPa. [Ans=8.188 10⁴ J/mol]

Table 2.1 Coefficients at p = 0.1 MPa for the heat capacity equation $C_{p, m}^{\circ}/(\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \text{mol}^{-1}) = a + 10^{-3} h \cdot T + 10^{5} c \cdot T^{-2} + 10^{-6} d \cdot T^{2}$

Substance	State	Temperature range (K)	а	ь	c	d^*
CH ₄	gas	298-2000	12.447	76.689	1.448	-18.004
CO	gas	298 - 2500	28.41	4.10	-0.46	
CO_2	gas	298-2500	44.14	9.04	-8.54	
Cl ₂	gas	298 - 3000	36.90	0.25	-2.85	