
HI
 -
 T
EC
H

HI - TECH COMPUTERS

#include <stdio.h> includes the standard input output library

functions. The printf() function is defined in stdio.h .

int main() The main() function is the entry point of every

program in c language.

printf() The printf() function is used to print data on the

console.

return 0 The return 0 statement, returns execution status to

the OS. The 0 value is used for successful execution and 1 for

unsuccessful execution.

How to compile and run the c program

By menu

Now click on the compile menu then compile sub menu to compile

the c program.

Then click on the run menu then run sub menu to run the c

program.

By shortcut

Or, press ctrl+f9 keys compile and run the program directly.

You will see the following output on user screen.

c program output

You can view the user screen any time by pressing the alt+f5

keys.

Now press Esc to return to the turbo c++ console.

What is a compilation?

The compilation is a process of converting the source code

into object code. It is done with the help of the compiler.

The compiler checks the source code for the syntactical or

structural errors, and if the source code is error-free, then

it generates the object code.

The c compilation process converts the source code taken as

input into the object code or machine code. The compilation

process can be divided into four steps, i.e., Pre-processing,

Compiling, Assembling, and Linking.

C - LANGUAGE 6

Preview from Notesale.co.uk

Page 6 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)*

&sizeof

Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift <<>> Left to right

Relational <<= >>= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &=

^= |=

Right to left

Comma , Left to right

C - LANGUAGE 19

Preview from Notesale.co.uk

Page 19 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Output

Enter two integer numbers: 56

11

Enter two float numbers:

78.98

56.45

Enter two double data type numbers:

47789.7149

1234.7987

The subtraction of two integer numbers: 45

The subtraction of two float numbers: 22.530003

The subtraction of two double numbers: 46554.916200

Multiplication Operator

The multiplication operator is represented as an asterisk (*)

symbol, and it is used to return the product of n1 and n2

numbers. The data type of the given number can be different

types such as int, float, and double in the C programing

language.

Syntax

C = A * B;

For example, there are two operands 15 and 6, and we want to

get their product. So, we can use the '*' Operator between the

given numbers that return int data 90.

/* program to multiply two numbers using astrisk (*) operator.

*/

#include <stdio.h>

#include <conio.h>

int main ()

{

// declare integer variables

int num1, num2, res;

C - LANGUAGE 23

Preview from Notesale.co.uk

Page 23 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

// declare float data type number

float f1, f2, res1;

// declare double variables

double d1, d2, res2;

printf (" Enter two integer numbers: ");

scanf ("%d %d", &num1, &num2);

res = num1 * num2; // use * operator

printf (" Enter two float numbers: \n ");

scanf ("%f %f", &f1, &f2);

res1 = f1 * f2; // use * operator

printf (" Enter two double data type numbers: \n ");

scanf ("%lf %lf", &d1, &d2);

res2 = d1 * d2; // use * operator

printf (" The multiplication of two integer numbers: %d \n",

res);

printf (" The multiplication of two float numbers: %f \n ",

res1);

printf (" The multiplication of two double numbers: %lf",

res2);

return 0;

}

Output

Enter two integer numbers: 15

12

Enter two float numbers:

2.5

3.5

Enter two double data type numbers:

234.324

798.124

The multiplication of two integer numbers: 180

The multiplication of two float numbers: 8.750000

C - LANGUAGE 24

Preview from Notesale.co.uk

Page 24 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

int a = 5;

int b = 10;

// Use Not Equal To (!=) Operator

printf (" a != b : %d", (a != b));

if (a != b)

printf ("\n %d is equal to %d", a, b);

else

printf (" \n %d is not equal to %d", a, b);

int x = 5;

int y = 5;

// Use Not Equal To (!=) Operator

printf (" \n x != y : %d", (x != y));

if (a != b)

printf (" \n %d is equal to %d", x, y);

else

printf ("\n %d is not equal to %d", x, y);

return 0;

}

Output

a != b : 1

5 is equal to 10

x != y : 0

5 is equal to 5

Less than Operator (<)

It is used to check whether the value of the left operand is

less than the right operand, and if the statement is true, the

operator is known as the Less than Operator.

C - LANGUAGE 32

Preview from Notesale.co.uk

Page 32 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Modulus and Assign Operator (%=):

An operator used between the left operand and the right

operand divides the first number (n1) by the second number

(n2) and returns the remainder in the left operand.

Syntax

A %= B;

Or

A = A % B;

Let's create a program to use the divide and assign operator

(%=) in C.

#include <stdio.h>

#include <conio.h>

int main ()

{

// initialize variables

int n1, n2, c;

printf (" Enter the value of n1: ");

scanf ("%d", &n1);

printf (" \n Enter the value of n2: ");

scanf ("%d", &n2);

n1 %= n2; // Use modulus and Equal operator (a = a % b)

printf (" \n The modulus value of n1: %d", n1);

return 0;

}

Output

Enter the value of n1: 23

Enter the value of n2: 5

The modulus value of n2: 3

C - LANGUAGE 43

Preview from Notesale.co.uk

Page 43 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Example 2: Let's create another program to use the

pre-increment operator in mathematical expression.

Program2.c

#include <stdio.h>

#include <conio.h>

int main ()

{

// declare integer variables

int a, b, c, d, x;

// initialization of the variables

a = 5;

b = 7;

c = 12;

d = 15;

// use pre-increment operator in the mathematical

expression

x = ++a + ++b + ++c + ++d;

printf(" The value of x is: %d ", x);

// print the updated value of a, b, c, and d

printf (" \n The updated value of a = %d, b = %d, c = %d and d

= %d ", a, b, c, d);

return 0;

}

Output

The value of x is: 43

The updated value of a = 6, b = 8, c = 13 and d = 16

C - LANGUAGE 46

Preview from Notesale.co.uk

Page 46 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Post-increment Operator

Post-increment is an increment operator, represented as the

double plus (a++) symbol followed by an operator 'a'. It

increments the value of the operand by 1 after using it in the

mathematical expression. In other words, the variable's

original value is used in the expression first, and then the

post-increment operator updates the operand value by 1.

Syntax

x = a++;

In the above syntax, the operand 'a' value is assigned to the

variable x, and then the post increment operator increases or

updates the value of 'a' by 1.

Example 1: Let's create a simple program to use the

post-increment operator in C programming language.

Program1.c

#include <stdio.h>

#include <conio.h>

int main ()

{

// declaration of the variables

int a = 7;

int b = 0;

// print the value of the increment operator

printf (" Before using the post-increment operator ");

printf (" \n The value of a is %d ", a);

printf (" \n The value of b is %d ", b);

// use post increment operator

b = a++;

printf (" \n\n After using the post-increment operator ");

printf (" \n The value of a is %d ", a);

C - LANGUAGE 47

Preview from Notesale.co.uk

Page 47 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

printf (" \n The updated value of a = %d, b = %d, c = %d and d

= %d ", a, b, c, d);

return 0;

}

Output

The value of x is: 39

The updated value of a = 6, b = 8, c = 13 and d = 16

Program to use the Pre-increment and Post-increment Operator

Let's create a simple program to use the pre-increment and

post-increment operator in the C programming language.

#include <stdio.h>

#include <conio.h>

int main ()

{

int x, y, z, exp;

printf (" Enter the value of x: ");

scanf (" %d", &x);

printf (" \n Enter the value of y: ");

scanf (" %d", &y);

printf (" \n Enter the value of z: ");

scanf (" %d", &z);

printf (" \n Before using the increment operator: ");

printf (" \n The original value of x: %d", x);

printf (" \n The original value of x: %d", y);

printf (" \n The original value of x: %d", z);

// use pre-increment and post-increment operator

exp = x++ + ++x + ++y + y++ + ++z;

printf (" \n\n After using the increment operator: ");

printf (" \n The result of the expression is: %d", exp);

printf (" \n The updated value of x: %d", x);

C - LANGUAGE 49

Preview from Notesale.co.uk

Page 49 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Unary Operator in C

In this section, we will discuss the unary operator in the C

programming language. Operators are the special symbols used

to perform mathematical and logical operations to the given

numbers or operands and returns results based on passed

operator between the operands.

A unary operator is an operator used to operate on a single

operand to return a new value. In other words, it is an

operator that updates the value of an operand or expression's

value by using the appropriate unary operators. In Unary

Operator, operators have equal priority from right to left

side associativity.

Unary Operator in C

Types of the Unary Operator

Following are the types of the unary operators in the C

programming language.

Unary Minus (-)

Unary Plus (+)

Increment (++)

Decrement (--)

Logical Negation (!)

Address Operator (&)

Sizeof() operator

Unary Minus (-)

The Unary Minus operator is represented using the symbol (-).

The unary operator is used to change the sign of any positive

value to a negative value. It means it changes the positive

number to the negative, and a negative number becomes the

positive number using the unary minus operator.

C - LANGUAGE 51

Preview from Notesale.co.uk

Page 51 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

The value of b is 19.

Unary Sizeof() Operator

The sizeof is a keyword used to find the size of different

data types or operands like int, float, char, double, etc.

Syntax

sizeof(data_variable);

#include <stdio.h>

#include <conio.h>

int main ()

{

// declaration of different types of data variables

int x;

float y;

char ch;

double z;

// use sizeof() operator and pass the different data type

variable to get their size.

printf (" The size of the int (x) variable is: %d",

sizeof(x));

printf (" \n The size of the float (y) variable is: %d",

sizeof(y));

printf (" \n The size of the char (ch) variable is: %d",

sizeof(ch));

printf (" \n The size of the double (z) variable is: %d",

sizeof(z));

return 0;

}

C - LANGUAGE 57

Preview from Notesale.co.uk

Page 57 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Logical operators

An operator can be defined as a symbol that is used for

performing different operations. In a programming language,

there are various types of operators such as arithmetic

operators, relational operators, logical operators, assignment

operator, increment/decrement operators, conditional

operators, bitwise operators, and shift operators.

In this article, we are discussing the logical operators and

their types, along with an example of each. Here, we will

discuss all types of logical operators irrespective of a

particular programming language. Some programming languages

support limited operators, so some of the logical operators

that we are discussing may or may not be supported by the

programming language you are using.

Logical operators are generally used for combining two or more

relational statements. They return Boolean values. The logical

operators are used primarily in the expression evaluation to

make a decision. These operators allow the evaluation and

manipulation of specific bits within the integer.

The types of Logical operators with their description are

tabulated as follows -

Operators Description

&&

(Logical

AND)

This operator returns true if all relational

statements combined with && are true, else it

returns false.

||

(Logical

OR)

This operator returns true if at least one of the

relational statements combined with || is true,

else it returns false.

! (logical

NOT)

It returns the inverse of the statement's result.

C - LANGUAGE 60

Preview from Notesale.co.uk

Page 60 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

to be commented

*/

Let's see an example of a multi-Line comment in C.

#include<stdio.h>

int main(){

/*printing information

Multi-Line Comment*/

printf("Hello C");

return 0;

}

Output:

Hello C

C - LANGUAGE 81

Preview from Notesale.co.uk

Page 81 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

C Format Specifier

The Format specifier is a string used in the formatted input

and output functions. The format string determines the format

of the input and output. The format string always starts with

a '%' character.

The commonly used format specifiers in printf() function are:

Format

specifier

Description

%d or %i It is used to print the signed integer value

where signed integer means that the variable can

hold both positive and negative values.

%u It is used to print the unsigned integer value

where the unsigned integer means that the

variable can hold only positive value.

%o It is used to print the octal unsigned integer

where octal integer value always starts with a 0

value.

%x It is used to print the hexadecimal unsigned

integer where the hexadecimal integer value

always starts with a 0x value. In this,

alphabetical characters are printed in small

letters such as a, b, c, etc.

%X It is used to print the hexadecimal unsigned

integer, but %X prints the alphabetical

characters in uppercase such as A, B, C, etc.

%f It is used for printing the decimal

floating-point values. By default, it prints the

6 values after '.'.

C - LANGUAGE 82

Preview from Notesale.co.uk

Page 82 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Specifying Precision

We can specify the precision by using '.' (Dot) operator which

is followed by integer and format specifier.

1. int main()

2. {

3. float x=12.2;

4. printf("%.2f", x);

5. return 0;

6. }

Output

C - LANGUAGE 88

Preview from Notesale.co.uk

Page 88 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

C Boolean

In C, Boolean is a data type that contains two types of

values, i.e., 0 and 1. Basically, the bool type value

represents two types of behavior, either true or false. Here,

'0' represents false value, while '1' represents true value.

In C Boolean, '0' is stored as 0, and another integer is

stored as 1. We do not require to use any header file to use

the Boolean data type in C++, but in C, we have to use the

header file, i.e., stdbool.h. If we do not use the header

file, then the program will not compile.

Syntax

bool variable_name;

In the above syntax, bool is the data type of the variable,

and variable_name is the name of the variable.

Let's understand through an example.

Play Video

#include <stdio.h>

#include<stdbool.h>

int main()

{

bool x=false; // variable initialization.

if(x==true) // conditional statements

{

printf("The value of x is true");

}

else

printf("The value of x is FALSE");

return 0;

}

C - LANGUAGE 93

Preview from Notesale.co.uk

Page 93 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

printf("%s", binary);

printf("\nThe ones complement of the binary number is :");

// Finding onescomplement in C

for(int i=0;i<n;i++)

{

if(binary[i]=='0')

onescomplement[i]='1';

else if(binary[i]=='1')

onescomplement[i]='0';

}

onescomplement[n]='\0';

printf("%s",onescomplement);

printf("\nThe twos complement of a binary number is : ");

// Finding twoscomplement in C

for(int i=n-1; i>=0; i--)

{

if(onescomplement[i] == '1' && carry == 1)

{

twoscomplement[i] = '0';

}

else if(onescomplement[i] == '0' && carry == 1)

{

twoscomplement[i] = '1';

carry = 0;

}

else

{

twoscomplement[i] = onescomplement[i];

}

}

C - LANGUAGE 104

Preview from Notesale.co.uk

Page 104 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

number is not equal to 10, 50 or 100

Output

enter a number:50

number is equal to 50

number is equal to 100

number is not equal to 10, 50 or 100

Nested switch case statement

We can use as many switch statement as we want inside a switch

statement. Such type of statements is called nested switch

case statements. Consider the following example.

1. #include <stdio.h>

2. int main () {

3.

4. int i = 10;

5. int j = 20;

6.

7. switch(i) {

8.

9. case 10:

10. printf("the value of i evaluated in outer

switch: %d\n",i);

11. case 20:

12. switch(j) {

13. case 20:

14. printf("The value of j evaluated in

nested switch: %d\n",j);

15. }

16. }

17.

18. printf("Exact value of i is : %d\n", i);

19. printf("Exact value of j is : %d\n", j);

20.

C - LANGUAGE 117

Preview from Notesale.co.uk

Page 117 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

9

10

Program to print table for the given number using while loop

in C

1. #include<stdio.h>

2. int main(){

3. int i=1,number=0,b=9;

4. printf("Enter a number: ");

5. scanf("%d",&number);

6. while(i<=10){

7. printf("%d \n",(number*i));

8. i++;

9. }

10. return 0;

11. }

Output

Enter a number: 50

50

100

150

200

250

300

350

400

450

500

Enter a number: 100

100

200

300

400

500

C - LANGUAGE 126

Preview from Notesale.co.uk

Page 126 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

For loop

Let's see the infinite 'for' loop. The following is the

definition for the infinite for loop:

1. for(; ;)

2. {

3. // body of the for loop.

4. }

As we know that all the parts of the 'for' loop are optional,

and in the above for loop, we have not mentioned any

condition; so, this loop will execute infinite times.

Let's understand through an example.

1. #include <stdio.h>

2. int main()

3. {

4. for(;;)

5. {

6. printf("Hello java");

7. }

8. return 0;

9. }

In the above code, we run the 'for' loop infinite times, so

"Hello java" will be displayed infinitely.

C - LANGUAGE 143

Preview from Notesale.co.uk

Page 143 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

12. return 0;

13. }

Output

1 1

1 2

1 3

2 1

2 3

3 1

3 2

3 3

As you can see, 2 2 is not printed on the console because

inner loop is continued at i==2 and j==2.

C - LANGUAGE 152

Preview from Notesale.co.uk

Page 152 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

C goto statement

The goto statement is known as jump statement in C. As the

name suggests, goto is used to transfer the program control to

a predefined label. The goto statment can be used to repeat

some part of the code for a particular condition. It can also

be used to break the multiple loops which can't be done by

using a single break statement. However, using goto is avoided

these days since it makes the program less readable and

complecated.

Syntax:

1. label:

2. //some part of the code;

3. goto label;

goto example

Let's see a simple example to use goto statement in C

language.

1. #include <stdio.h>

2. int main()

3. {

4. int num,i=1;

5. printf("Enter the number whose table you want to

print?");

6. scanf("%d",&num);

7. table:

8. printf("%d x %d = %d\n",num,i,num*i);

9. i++;

10. if(i<=10)

11. goto table;

12. }

Output:

Enter the number whose table you want to print?10

10 x 1 = 10

10 x 2 = 20

10 x 3 = 30

C - LANGUAGE 153

Preview from Notesale.co.uk

Page 153 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

0 0 1

0 0 2

0 1 0

0 1 1

0 1 2

0 2 0

0 2 1

0 2 2

0 3 0

came out of the loop

C - LANGUAGE 155

Preview from Notesale.co.uk

Page 155 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Consider the following example for the call by reference.

1. #include<stdio.h>

2. void change(int *num) {

3. printf("Before adding value inside function num=%d

\n",*num);

4. (*num) += 100;

5. printf("After adding value inside function num=%d

\n", *num);

6. }

7. int main() {

8. int x=100;

9. printf("Before function call x=%d \n", x);

10. change(&x);//passing reference in function

11. printf("After function call x=%d \n", x);

12. return 0;

13. }

Output

Before function call x=100

Before adding value inside function num=100

After adding value inside function num=200

After function call x=200

Call by reference Example: Swapping the values of the two

variables

1. #include <stdio.h>

2. void swap(int *, int *); //prototype of the function

3. int main()

4. {

5. int a = 10;

6. int b = 20;

7. printf("Before swapping the values in main a = %d, b

= %d\n",a,b); // printing the value of a and b in main

8. swap(&a,&b);

C - LANGUAGE 171

Preview from Notesale.co.uk

Page 171 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

9. printf("After swapping values in main a = %d, b =

%d\n",a,b); // The values of actual parameters do change

in call by reference, a = 10, b = 20

10. }

11. void swap (int *a, int *b)

12. {

13. int temp;

14. temp = *a;

15. *a=*b;

16. *b=temp;

17. printf("After swapping values in function a = %d, b

= %d\n",*a,*b); // Formal parameters, a = 20, b = 10

18. }

Output

Before swapping the values in main a = 10, b = 20

After swapping values in function a = 20, b = 10

After swapping values in main a = 20, b = 10

C - LANGUAGE 172

Preview from Notesale.co.uk

Page 172 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Recursion in C

Recursion is the process which comes into existence when a

function calls a copy of itself to work on a smaller problem.

Any function which calls itself is called recursive function,

and such function calls are called recursive calls. Recursion

involves several numbers of recursive calls. However, it is

important to impose a termination condition of recursion.

Recursion code is shorter than iterative code however it is

difficult to understand.

Recursion cannot be applied to all the problem, but it is more

useful for the tasks that can be defined in terms of similar

subtasks. For Example, recursion may be applied to sorting,

searching, and traversal problems.

Generally, iterative solutions are more efficient than

recursion since function call is always overhead. Any problem

that can be solved recursively, can also be solved

iteratively. However, some problems are best suited to be

solved by the recursion, for example, factorial finding, etc.

In the following example, recursion is used to calculate the

factorial of a number.

1. #include <stdio.h>

2. int fact (int);

3. int main()

4. {

5. int n,f;

6. printf("Enter the number whose factorial you want to

calculate?");

7. scanf("%d",&n);

8. f = fact(n);

9. printf("factorial = %d",f);

10. }

11. int fact(int n)

12. {

C - LANGUAGE 173

Preview from Notesale.co.uk

Page 173 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Storage Classes in C

Storage classes in C are used to determine the lifetime,

visibility, memory location, and initial value of a variable.

There are four types of storage classes in C

● Automatic

● External

● Static

● Register

Storage

Classes

Storage

Place

Default

Value

Scope Lifetime

auto RAM Garbage

Value

Local Within function

extern RAM Zero Global Till the end of the

main program Maybe

declared anywhere in

the program

static RAM Zero Local Till the end of the

main program,

Retains value

between multiple

functions call

register Register Garbage

Value

Local Within the function

Automatic

● Automatic variables are allocated memory automatically at

runtime.

● The visibility of the automatic variables is limited to

the block in which they are defined.

C - LANGUAGE 175

Preview from Notesale.co.uk

Page 175 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

12. temp = a[i];

13. a[i] = a[j];

14. a[j] = temp;

15. }

16. }

17. }

18. printf("Printing Sorted Element List ...\n");

19. for(i = 0; i<10; i++)

20. {

21. printf("%d\n",a[i]);

22. }

23. }

C - LANGUAGE 184

Preview from Notesale.co.uk

Page 184 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

17. for (j=0;j<3;j++)

18. {

19. printf("%d\t",arr[i][j]);

20. }

21. }

22. }

Output

Enter a[0][0]: 56

Enter a[0][1]: 10

Enter a[0][2]: 30

Enter a[1][0]: 34

Enter a[1][1]: 21

Enter a[1][2]: 34

Enter a[2][0]: 45

Enter a[2][1]: 56

Enter a[2][2]: 78

printing the elements

56 10 30

34 21 34

45 56 78

C - LANGUAGE 187

Preview from Notesale.co.uk

Page 187 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

1. #include<stdio.h>

2. int main(){

3. int number=50;

4. int *p;

5. p=&number;//stores the address of number variable

6. printf("Address of p variable is %x \n",p); // p contains

the address of the number therefore printing p gives the

address of number.

7. printf("Value of p variable is %d \n",*p); // As we know

that * is used to dereference a pointer therefore if we

print *p, we will get the value stored at the address

contained by p.

8. return 0;

9. }

Output

Address of number variable is fff4

Address of p variable is fff4

Value of p variable is 50

Pointer to array

1. int arr[10];

2. int *p[10]=&arr; // Variable p of type pointer is

pointing to the address of an integer array arr.

Pointer to a function

1. void show (int);

2. void(*p)(int) = &display; // Pointer p is pointing to the

address of a function

Advantage of pointer

1) Pointer reduces the code and improves the performance, it

is used to retrieving strings, trees, etc. and used with

arrays, structures, and functions.

2) We can return multiple values from a function using the

pointer.

C - LANGUAGE 195

Preview from Notesale.co.uk

Page 195 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

1. #include<stdio.h>

2. int main(){

3. int a=10,b=20,*p1=&a,*p2=&b;

4.

5. printf("Before swap: *p1=%d *p2=%d",*p1,*p2);

6. *p1=*p1+*p2;

7. *p2=*p1-*p2;

8. *p1=*p1-*p2;

9. printf("\nAfter swap: *p1=%d *p2=%d",*p1,*p2);

10.

11. return 0;

12. }

Output

Before swap: *p1=10 *p2=20

After swap: *p1=20 *p2=10

C - LANGUAGE 197

Preview from Notesale.co.uk

Page 197 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

10. printf("Value of *p variable is %d \n",*p);

11. printf("Address of p2 variable is %x \n",p2);

12. printf("Value of **p2 variable is %d \n",*p);

13. return 0;

14. }

Output

Address of number variable is fff4

Address of p variable is fff4

Value of *p variable is 50

Address of p2 variable is fff2

Value of **p variable is 50

C - LANGUAGE 200

Preview from Notesale.co.uk

Page 200 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

1. #include<stdio.h>

2. int main(){

3. int number=50;

4. int *p;//pointer to int

5. p=&number;//stores the address of number variable

6. printf("Address of p variable is %u \n",p);

7. p=p+1;

8. printf("After increment: Address of p variable is %u

\n",p); // in our case, p will get incremented by 4

bytes.

9. return 0;

10. }

Output

Address of p variable is 3214864300

After increment: Address of p variable is 3214864304

Decrementing Pointer in C

Like increment, we can decrement a pointer variable. If we

decrement a pointer, it will start pointing to the previous

location. The formula of decrementing the pointer is given

below:

1. new_address= current_address - i * size_of(data type)

32-bit

For 32-bit int variable, it will be decremented by 2 bytes.

64-bit

For 64-bit int variable, it will be decremented by 4 bytes.

Let's see the example of decrementing pointer variable on

64-bit OS.

1. #include <stdio.h>

2. void main(){

3. int number=50;

4. int *p;//pointer to int

5. p=&number;//stores the address of number variable

C - LANGUAGE 202

Preview from Notesale.co.uk

Page 202 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

6. printf("Address of p variable is %u \n",p);

7. p=p-1;

8. printf("After decrement: Address of p variable is %u

\n",p); // P will now point to the immidiate previous

location.

9. }

Output

Address of p variable is 3214864300

After decrement: Address of p variable is 3214864296

C Pointer Addition

We can add a value to the pointer variable. The formula of

adding value to pointer is given below:

1. new_address= current_address + (number * size_of(data

type))

32-bit

For 32-bit int variable, it will add 2 * number.

64-bit

For 64-bit int variable, it will add 4 * number.

Let's see the example of adding value to pointer variable on

64-bit architecture.

1. #include<stdio.h>

2. int main(){

3. int number=50;

4. int *p;//pointer to int

5. p=&number;//stores the address of number variable

6. printf("Address of p variable is %u \n",p);

7. p=p+3; //adding 3 to pointer variable

8. printf("After adding 3: Address of p variable is %u

\n",p);

9. return 0;

10. }

C - LANGUAGE 203

Preview from Notesale.co.uk

Page 203 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

9. return 0;

10. }

Output

Address of p variable is 3214864300

After subtracting 3: Address of p variable is 3214864288

You can see after subtracting 3 from the pointer variable, it

is 12 (4*3) less than the previous address value.

However, instead of subtracting a number, we can also subtract

an address from another address (pointer). This will result in

a number. It will not be a simple arithmetic operation, but it

will follow the following rule.

void pointer in C

Till now, we have studied that the address assigned to a

pointer should be of the same type as specified in the pointer

declaration. For example, if we declare the int pointer, then

this int pointer cannot point to the float variable or some

other type of variable, i.e., it can point to only int type

variable. To overcome this problem, we use a pointer to void.

A pointer to void means a generic pointer that can point to

any data type. We can assign the address of any data type to

the void pointer, and a void pointer can be assigned to any

type of the pointer without performing any explicit

typecasting.

Syntax of void pointer

1. void *pointer name;

Size of the void pointer in C

The size of the void pointer in C is the same as the size of

the pointer of character type. According to C perception, the

representation of a pointer to void is the same as the pointer

C - LANGUAGE 205

Preview from Notesale.co.uk

Page 205 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

What is a Null Pointer?

A Null Pointer is a pointer that does not point to any memory

location. It stores the base address of the segment. The null

pointer basically stores the Null value while void is the type

of the pointer.

A null pointer is a special reserved value which is defined in

a stddef header file. Here, Null means that the pointer is

referring to the 0th memory location.

If we do not have any address which is to be assigned to the

pointer, then it is known as a null pointer. When a NULL value

is assigned to the pointer, then it is considered as a Null

pointer.

Applications of Null Pointer

Following are the applications of a Null pointer:

● It is used to initialize a pointer variable when the

pointer does not point to a valid memory address.

● It is used to perform error handling with pointers before

dereferencing the pointers.

● It is passed as a function argument and to return from a

function when we do not want to pass the actual memory

address.

Let's look at the situations where we need to use the null

pointer.

● When we do not assign any memory address to the pointer

variable.

1. #include <stdio.h>

2. int main()

3. {

4. int *ptr;

5. printf("Address: %d", ptr); // printing the value of

ptr.

C - LANGUAGE 207

Preview from Notesale.co.uk

Page 207 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

6. printf("Value: %d", *ptr); // dereferencing the

illegal pointer

7. return 0;

8. }

In the above code, we declare the pointer variable *ptr, but

it does not contain the address of any variable. The

dereferencing of the uninitialized pointer variable will show

the compile-time error as it does not point any variable.

According to the stack memory concept, the local variables of

a function are stored in the stack, and if the variable does

not contain any value, then it shows the garbage value. The

above program shows some unpredictable results and causes the

program to crash. Therefore, we can say that keeping an

uninitialized pointer in a program can cause serious harm to

the computer.

How to avoid the above situation?

We can avoid the above situation by using the Null pointer. A

null pointer is a pointer pointing to the 0th memory location,

which is a reserved memory and cannot be dereferenced.

1. #include <stdio.h>

2. int main()

3. {

4. int *ptr=NULL;

5. if(ptr!=NULL)

6. {

7. printf("value of ptr is : %d",*ptr);

8. }

9. else

10. {

11. printf("Invalid pointer");

12. }

13. return 0;

14. }

C - LANGUAGE 208

Preview from Notesale.co.uk

Page 208 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

C String Uppercase: strupr()

The strupr(string) function returns string characters in

uppercase. Let's see a simple example of strupr() function.

1. #include<stdio.h>

2. #include <string.h>

3. int main(){

4. char str[20];

5. printf("Enter string: ");

6. gets(str);//reads string from console

7. printf("String is: %s",str);

8. printf("\nUpper String is: %s",strupr(str));

9. return 0;

10. }

Output:

Enter string: java

String is: java

Upper String is: JAVA

C String strstr()

The strstr() function returns pointer to the first occurrence

of the matched string in the given string. It is used to

return substring from first match till the last character.

Syntax:

1. char *strstr(const char *string, const char *match)

String strstr() parameters

string: It represents the full string from where substring

will be searched.

match: It represents the substring to be searched in the full

string.

1. #include<stdio.h>

2. #include <string.h>

3. int main(){

4. char str[100]="this is java with c and java";

5. char *sub;

C - LANGUAGE 219

Preview from Notesale.co.uk

Page 219 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Let's see the example to declare the structure variable by

struct keyword. It should be declared within the main

function.

1. struct employee

2. { int id;

3. char name[50];

4. float salary;

5. };

Now write given code inside the main() function.

1. struct employee e1, e2;

The variables e1 and e2 can be used to access the values

stored in the structure. Here, e1 and e2 can be treated in the

same way as the objects in C++ and Java.

2nd way:

Let's see another way to declare variable at the time of

defining the structure.

1. struct employee

2. { int id;

3. char name[50];

4. float salary;

5. }e1,e2;

Which approach is good

If number of variables are not fixed, use the 1st approach. It

provides you the flexibility to declare the structure variable

many times.

If no. of variables are fixed, use 2nd approach. It saves your

code to declare a variable in main() function.

Accessing members of the structure

There are two ways to access structure members:

1. By . (member or dot operator)

2. By -> (structure pointer operator)

Let's see the code to access the id member of p1 variable by.

(member) operator.

1. p1.id

C - LANGUAGE 224

Preview from Notesale.co.uk

Page 224 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

employee 1 id : 101

employee 1 name : Ram

employee 1 salary : 56000.000000

employee 2 id : 102

employee 2 name : James Bond

employee 2 salary : 126000.000000

C - LANGUAGE 227

Preview from Notesale.co.uk

Page 227 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

typedef in C

The typedef is a keyword used in C programming to provide some

meaningful names to the already existing variable in the C

program. It behaves similarly as we define the alias for the

commands. In short, we can say that this keyword is used to

redefine the name of an already existing variable.

Syntax of typedef

1. typedef <existing_name> <alias_name>

In the above syntax, 'existing_name' is the name of an already

existing variable while 'alias name' is another name given to

the existing variable.

For example, suppose we want to create a variable of type

unsigned int, then it becomes a tedious task if we want to

declare multiple variables of this type. To overcome the

problem, we use a typedef keyword.

1. typedef unsigned int unit;

In the above statements, we have declared the unit variable of

type unsigned int by using a typedef keyword.

Now, we can create the variables of type unsigned int by

writing the following statement:

1. unit a, b;

instead of writing:

1. unsigned int a, b;

Till now, we have observed that the typedef keyword provides a

nice shortcut by providing an alternative name for an already

existing variable. This keyword is useful when we are dealing

with the long data type especially, structure declarations.

C - LANGUAGE 228

Preview from Notesale.co.uk

Page 228 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

No. Function Description

1 fopen() opens new or existing file

2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the file

5 fgetc() reads a character from file

6 fclose() closes the file

C - LANGUAGE 241

Preview from Notesale.co.uk

Page 241 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Let's see a simple program of "&&" operator.

1. #include <stdio.h>

2. int main()

3. {

4. int x = 4;

5. int y = 10;

6. if ((x <10) && (y>5))

7. {

8. printf("Condition is true");

9. }

10. else

11. printf("Condition is false");

12. return 0;

13. }

Output

C - LANGUAGE 255

Preview from Notesale.co.uk

Page 255 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

Factorial Program using recursion in C

Let's see the factorial program in c using recursion.

1. #include<stdio.h>

2.

3. long factorial(int n)

4. {

5. if (n == 0)

6. return 1;

7. else

8. return(n * factorial(n-1));

9. }

10.

11. void main()

12. {

13. int number;

14. long fact;

15. printf("Enter a number: ");

16. scanf("%d", &number);

17.

18. fact = factorial(number);

19. printf("Factorial of %d is %ld\n", number, fact);

20. return 0;

21. }

Output:

Enter a number: 6

Factorial of 5 is: 720

C - LANGUAGE 259

Preview from Notesale.co.uk

Page 259 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

C Program to swap two numbers without third variable

We can swap two numbers without using third variable. There

are two common ways to swap two numbers without using third

variable:

1. By + and -

2. By * and /

Program 1: Using + and -

Let's see a simple c example to swap two numbers without using

third variable.

1. #include<stdio.h>

2. int main()

3. {

4. int a=10, b=20;

5. printf("Before swap a=%d b=%d",a,b);

6. a=a+b;//a=30 (10+20)

7. b=a-b;//b=10 (30-20)

8. a=a-b;//a=20 (30-10)

9. printf("\nAfter swap a=%d b=%d",a,b);

10. return 0;

11. }

Output:

Before swap a=10 b=20

After swap a=20 b=10

C - LANGUAGE 260

Preview from Notesale.co.uk

Page 260 of 277

HI
 -
 T
EC
H

HI - TECH COMPUTERS

My hobbies are: Watching news channels, Playing volleyball,

Listening to music.

Possible Answer 2

"Good morning/afternoon/evening" sir/mam, it's my pleasure to

introduce myself. I am Anshika Bansal. I belong to Meerut. I

have done my B.Tech in CSE from Lovely Professional

University.

While coming to my family members, there are 4 members

including me. My father is a doctor, and any mother is a

teacher. My younger sister will appear her 12th CBSE board

exam this year.

Now coming to me, I am sweet smart, confident, and hardworking

person. I am a cool hearted person, so usually see every

difficulty with a positive side and keep myself always smiling

which makes me stronger even more.

I can carry out any task assigned to me without hesitation.

My hobbies are dancing, Internet surfing, playing Chess,

listening to music, watching the news channel. In my spare

time, I like to read news on my phone and traveling to my

hometown.

Thank you for giving this opportunity to introduce myself.

Possible Answer 3

"Good morning/afternoon/evening" sir/mam, it's my pleasure to

introduce myself. I am Anshika Bansal. I belong to Meerut. I

have done my B.Tech in CSE from Lovely Professional

University.

I am carrying 5 years of experience at top Wall Street

Companies. In my recent company, I led the development of an

award-winning new trading platform. I can survive in a

fast-paced environment.

C - LANGUAGE 271

Preview from Notesale.co.uk

Page 271 of 277

