
 8

4.5 SDLC Common Roles & Responsibilities

According to NYS Project Management Guidebook, in SDLC, the team members have the

following roles & responsibilities:

(a) The Project Team

— It consists of a Project Manager and a variable number of Project Team members who are

responsible for planning and executing the project. Team members specific to the System

Development Lifecycle are described below.

(b) The Facilitator

— The one who leads sessions to identify business requirements and issues, keeps session’s focused

and productive, draws out issues and ideas from all participants, and maintains clear and open

communications within the session.

(c) The Business Analyst

— The one that effectively leads discussions with the Customers to determine the business

requirements, participates in preparing the data and process models, prepares module specifications,

test data, and user documentation materials, assists in prototyping activities, and develops strategies

for testing and implementation.

(d) The Database Administrator

—The one who is responsible for providing and maintaining database administration policies and

procedures, approving and executing database scripts, performing database tuning activities, and

transforming a pictorial representation of the system data into physical database tables that support

the final system.

(e) The Data/Process Modeler

— The one that develops and maintains data and process models to represent the business

information needs in the area under study, develops and defines the data dictionary, validates

models with the Customers, and participates in prototyping.

Preview from Notesale.co.uk

Page 9 of 27

 17

8.0 Overcoming Requirements Modeling Challenges

Consequently, we may have understand that very often requirements modeling efforts are

undermined by the project team environment – it is common to discover that an organization’s

culture isn’t conducive to effective software development efforts or project stakeholders do not

understand the implications of their decisions. In this paper, I had identify common challenges, or at

least issues which are perceived as challenges, that many development teams face when it comes to

requirements modeling which include:

(1) But We Gave You Exactly What You Asked For

The requirements gathering phase is rather an iterative process. By so doing, the risk of giving the

stakeholder what they ask for, rather than what they really need, is increased. The requirements

definition phase of a software project is never the self-contained function implied by many software

development life-cycle models. Thus, it is not enough to obtain the stakeholders’ requirements once

and assume that they are correct.

(2) I Know That I Think I Know What Your Requirements Are

This risk is a very common occurrence. It is characterized by not involving project stakeholders

throughout the development effort. By not taking necessary steps to assure that we understand the

requirements, we are inviting project rework that will result in schedule delays and cost overruns.

However, typically this requirements risk will not be identified until stakeholder testing or

implementation.

(3) Overboard Assumptions

The risk of assuming that developers and customers have the same thoughts about system

requirements is like assuming that we all agree on political or religious issues. At this stage of

development, there will almost certainly be negative impacts on both project cost and schedule.

These issues are often not identified until the customer first sees the application.

Preview from Notesale.co.uk

Page 18 of 27

 20

9.0 Recommendation — Strategies to Mitigate Requirements Risks

In this paper, I also discuss potential solutions for dealing with those challenges which encompass:

(1) Develop and Follow Sound Processes and Procedures

The problem comes when the process that I follow and the process others in the organization follow

is not the same. This lack of consistency leads to confusion, misunderstandings, development delays,

and cost overruns.

An important step to mitigating requirements risks is for the organization to develop and strictly

follow sound processes and procedures relative to requirements engineering. These processes and

procedures should include direction to developers in the following areas:

 Requirements elicitation.

 Requirements analysis.

 Documentation of requirements.

 Requirements verification, review, and approval.

 Configuration control of requirements.

 Requirements traceability.

The organization should also ensure that roles and responsibilities relative to these processes and

procedures are clearly defined.

(2) Incorporate Requirements into All Software Life Cycles

By now, the need and value of having organizationally accepted software lifecycle models and

methods should be well established. From our research and knowledge of various life-cycle models,

they all include a requirements analysis, requirements management, or stakeholder requirements

phase. By assuring that the life cycle(s) approved for usage within the organization require proper

levels of requirements administration, the risk associated with projects relative to requirements will

be reduced.

Preview from Notesale.co.uk

Page 21 of 27

 22

interpretations based on the background of the various stakeholders.

Box-based documentation uses geometric symbols to represent various aspects of the system

requirements. This approach is designed with the software engineer in mind and is generally more

comfortable for the software engineer to follow and understand. This approach is traditionally more

difficult for end users to understand because of the learning curve associated with this type of

documentation.

Graphic-based documentation is the most recent of the three documentation forms. It was

developed to support object-oriented development and design techniques. This method uses

geographic symbols to represent the actual objects within a system. As with the box-based methods,

graphic-based documentation is tailored more toward the developer than to the end user's

understanding.

We recommend that some combination approach be adopted, experience using a combination of

graphics and text. This approach helps the users insert themselves into the process or requirement

being documented. It also is easily understood by the developers and serves as a useful tool to both

elicit and validate requirements.

(6) Validate Software Requirements

As requirements are documented, the stakeholders should validate them. Requirements validation is

an essential step to ensure that requirements are properly understood and documented. Often the act

of requirements validation will uncover requirements issues that can be discovered in no other way.

This mitigation strategy goes hand in hand with the need for dedicated stakeholder involvement.

(7) Hold Formal Requirements Reviews

Studies indicate that document reviews greatly reduce the errors in critical documents. Errors,

inconsistencies, ambiguities, and confusion can be greatly reduced by holding formal reviews of

software requirements documents. Formal reviews will greatly improve the quality of software

requirements documents. Teams performing requirements management activities should be trained

in sound review methods.

Preview from Notesale.co.uk

Page 23 of 27

